Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Different Irrigation Levels on Some Tomato Cultivars

Yıl 2025, Cilt: 14 Sayı: 2, 156 - 167, 29.12.2025
https://doi.org/10.29278/azd.1760165

Öz

Objective: Global climate change has negative effects on plants. Also, abiotic stresses, especially water stress, have negative effects on plants. The aim of the study is to determine the responses of different tomato varieties in terms of plant development at young plant stage and different water levels.
Materials and Methods: The study was carried out in the climate chamber of the Department of Horticulture, Sirnak University. F1-Seminis and SVTD 8008 F1-Hazera 5656 and tomato variety were used as materials and vermiculite as substrate and Hoogland nutrient solution for irrigation. The experiment was conducted under five irrigation levels: 15%, 25%, 50%, 75%, and 100% (control).. Evaluation with 0-4 (score) Scale in green shoot , leaf number, plant height, plant stem, fresh and dry weights, leaf area, leaf relative water content (RWC), chlorophyll density (SPAD) in leaves, mineral elements (K, Ca), chlorophyll and carotenoid concentrations, total phenolic and total flavonoids were made. The trial was conducted according to the randomized plot design.
Results: According to the measurement results in the experiment, Plant Height, Plant Stem, Fresh and Dry Weights, Leaf Area, Leaf Relative Water Content, Mineral Element (K, Ca), Total Phenolic and Total Flavonoids were found to be statistically significant.
Conclusion: In water stress conditions, significant problems are experienced in plant production. Significant decreases are known, especially in plant growth and cell division. As a natural result of this, there are decreases in the number of leaves, plant height, leaf area, stem diameter, leaf relative water content and dry matter content rates. In the study, it was determined that the F1-Hazera 5656 variety, which was subjected to water stress, was more tolerant to water stress than the F1-Seminis 8008 variety.

Proje Numarası

2020.FLTP.13.01.07

Kaynakça

  • Akhoundnejad, Y., & Daşgan, H.Y. (2019). Effect of Different Irrigation Levels on Physiological Performance of Some Drought Tolerant Melon (Cucumis melo L.) Genotypes. Applied Ecology and Environmental Research, 17(4), 9997–10012.
  • Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, Transpiration, Stomatal Conductance of Some Melon (Cucumic melo L.) Genotypes Under Different Drought Stress. Fresenius Environmental Bulletin, 29(12),10974–10979.
  • Aktaş, H. (2002). Biberde Tuza Dayanıklılığın Fizyolojik Karakterizasyonu ve Kalıtımı. Ç.Ü. Fen Bilimleri Enst. Doktora Tezi, Adana, 105 sayfa
  • Alp, Y., & Kabay, T. (2017). Kuraklık Stresinin Bazı Yerli ve Ticari Domates Çeşitlerinde Bitki Gelişimi Üzerine Etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(3), 387-395
  • Anonim, (2007). Climate Change 2007: The Physical Science Basis. https://www.ipcc.ch/report/ar4/wg1/ (Son erişim tarihi: 12.06.2020)
  • Arnon, D.I. (1949). Copper Enzymes ın Isolated Chloroplast: Polyphenoloxidase in (Beta Vulgaris). Plant Physiology, 14, 1-15.
  • Ashraf, M., & Arfan, M. (2005). Gas exchange characteristics and water relations in two cultivars of Hibicus esculentus under waterlogging. Biologia Plantarum, 49 (3), 459-462.
  • Bat, M., Tunçtürk, R., & Tunçtürk, M. (2018). Kuraklık Stresi Altındaki Ekinezya (Echinacea purpurea L.)’da Deniz Yosununun Büyüme Parametreleri, Toplam Fenolik ve Antioksidan Madde Üzerine Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(3), 496-505.
  • Birgin, Ö., Akhoundnejad, Y., & Dasgan, H.Y. (2021). The Effect of Foliar Calcium Application in Tomato (Solanum lycopersicum L.) Under Drought Stress in Greenhouse Conditions. Applied Ecology and Environmental Research. 19, 2971–2982.
  • Bogale, G.A., & Erena, Z.B. (2022). Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. Journal of Applied Animal Research, 50, 471–489.
  • Catsky, J. (1974). Water Saturation Deficit (Relative Water Content), p. 136– 156. In: B. Slavik (ed.). Methods of Studying Plant Water Relations. Springer Verlag, New York.
  • Daşgan, H.Y., Koç, S., & Ekici, B. (2006). Bazı Fasulye ve Börülce Tiplerinin Tuz Stresine Tepkileri. Alatarım Dergisi, 5(1), 23 – 31
  • Dündar, Ö., Demircioğlu, H., Özkaya, O., Valizadeh, A., Daşgan, H. Y., & Akhoundnejad, Y. (2017). Organik Domates Yetiştiriciliğinde Farklı Besin Uygulamalarının Muhafaza Ve Kalite Özellikleri Üzerine Etkileri. Akademik Ziraat Dergisi, 6, 305-312
  • Egilla, J.N., Davies, F. T., & Malcolm, C. D. (2001). Effect of K on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro- and micronutrient content and root longevity. Plant and Soil, 229(2), 213-224.
  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu1, C., Wang,D. & Huang, J. (2017). Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8, 1147.
  • Fang, Y., & Xiong, L. (2015). General Mechanisms of Drought Response and Their Application in Drought Resistance İmprovement in Plants. Cellular And Molecular Life Sciences, 72, 673-689.
  • FAO, (2023). Food and Agriculture Organization Corporate Statistical Database
  • Ford, N.A., & Erdman, J.W.Jr. (2012). Arely Copene Metabolites Metabolically Active. Acta biochimica polonica, 59, 1-4.
  • Geravandi, M., Farshadfar, E., & Kahrizi, D. (2011). Evaluation of Some Physiological Traits as İndicators of Drought Tolerance in Bread Wheat Genotypes. Russian Journal of Plant Physiology, 58 (1), 69-75.
  • Gerszberg, A., Hnatuszko-Konka, K., Kowalczyk, T. & Kononowicz, A. K. (2015). Tomato (Solanum lycopersicum L.) in The Service of Biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 881-902.
  • Günes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E., & Guzelordu, T. (2006). Genotypic Response of Chicpea (Cicer arietinum L.) Cultivars to Drought Stress İmplemented at Pre and Post Anthesis Stages and Its Relations With Nutrient Uptake and Efficiency. Plant Soil and Environment, 52, 368- 376.
  • Hao, Z., Singh, V. P., Xia, Y. (2018). Seasonal drought prediction: advances, challenges, and future prospects. Reviews of Geophysics 56, 108–141. doi: 10.1002/2016RG000549
  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 7, 1029.
  • Kacar, B., Katkat. B., & Öztürk, Ş. (2006). Bitki Fizyolojisi. Nobel Yayım Dağıtım. 2, 493- 533.
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). The Effects of Drought on Plants and Tolerance Mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi. 21(3): 332- 342
  • Keleş, Y., & Öncel, I. (2002). Buğday fidelerinde büyüme ve pigment içeriği üzerine sıcaklık ve su-tuz streslerinin birlikte etkileri. Australian Journal of Science and Technology (AJST), 3(1), 143-152
  • Korkmaz, K., Bolat, I., Karakas, S, & Dikilitas, M. (2022). Responses to single and combined application of Humic acid and silicon under water stress on strawberry. Erwerbs-Obstbau. https://doi.org/10.1007/s10341-022-00692-9
  • Kuşvuran, Ş. (2010). Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar. Çukurova Üniversitesi Fen Bilimleri Enst., Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, Adana, 356 s.
  • Kuşvuran, Ş., Daşgan, H.Y., & Abak, K. (2008). Farklı Bamya Genotiplerinin Kuraklık Stresine Tepkileri. VII. Sebze Tarımı Sempozyumu, 26-29 Ağustos 2008, Yalova.
  • Martínez-Valderrama, J., Olcina, J., Delacámara, G., Guirado, E., & Maestre, F.T. (2023). Complex Policy Mixes are Needed to Cope With Agricultural Water Demands under Climate Change. Water Resour Manage, 37(6):2805–2834
  • Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Ratna Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. (2017). Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in Plant Science, 8, 172. doi:10.3389/fpls.2017.00172
  • Molina-Quijada, D.M.A., Medina-Juárez, L.A., González-Aguilar, G.A., RoblesSánchez, R.M., & Gámez-Meza, N. (2010). Compuestos Fenólicosy Actividad Antioxidante de Cáscara de Uva (Vitis vinifera L.) de Mesa Cultivada en el Noroeste de México Phenolic Compounds and Antioxidant Activity of Table Grape (Vitis vinifera L.) Skin From Northwest Mexico. CyTA--Journal of Food, 8(1), 57-63.
  • Öztürk, N. Z. (2015). Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3, 307-315.
  • Sadak, A., 2018. Kuraklık Stresi Altındaki Biber Fidelerinde PGPR Uygulamalarının Etkisi Van Yüzüncüyıl Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 28s, Van
  • Sandman, G.,Romer, S., & Fraser, P.D. (2006). Understanding Carotenoid Metabolism as a Necessity for Genetic Engineering of Cropplants. Metabolic Engineering, 8, 291–302
  • Sankar, B., Abdul Jaleel, C., Manıvannan, P., Kıshorekumar, A., Somasundaram, R., & Panneerselvan, R. (2008). Relative Efficacy of Water Use in Five Varieties of Abelmoschus esculentus (L.) Moench. under Water Limited Conditions. Biointerfaces, 62, 125-129.
  • Schröder, F.G., & J.H. Lieth. (2002). Irrigation control in hydroponics. Pages 263-298,in Hydroponic Production of Vegetables and Ornamentals. Ed. D. Savvas and H. Passam, Embryo Publications, Athens
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of Total Phenolics With Phosphomolybdic- Phosphotungstic Acid Reagents, The American Journal of Enology and Viticulture, 16, 144-158.
  • Taiz, L., & Zeiger, E. (2006). Plant Physiology. 4th. Sinauer Associate, Sunderland, Mass., EUA.F
  • Thompson, K. A., Marshall, M. R., Sims, C. A., Wei, C. I., Sargent, S. A., & Scott, J. W. (2000). Cultivar, Maturity, and Heat Treatment on Lycopene Content in Tomatoes. Journal of Food Science, 65(5), 791-795.
  • Tiryaki, T. (2018). Su Stresinin Yağ Gülü (Rosa Damascena Mill.) Fidanlarında Morfolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü.
  • Tomozeiu, R., Pasqui, M., & Quaresima, S. (2018). Future Changes of Air Temperature over Italian Agricultural Areas: A Statistical Downscaling Technique Applied to 2021–2050 and 2071–2100 Periods. Meteorology and Atmospheric Physics, 130, 543–563.
  • TÜİK, (2023). Türkiye İstaistik Kurumu. Bitkisel Üretim İstatistikleri.
  • Turner, N.C. (1981). Techniques and Experimental Approaches for the Measurement of Plant Water Stress. Plant Soil, 58,339-366.
  • Wang, J.H., Geng, L.H., & Zhang, C.M. (2012). Research on The Weak Signal Detecting Technique for Crop Water Stres Based on Wavelet Denoising. Advanced Materials Research, 424/425, 966–970.
  • Wang, L.N., Zhu, Q.K., Zhao, W.J., & Zhao, X.K. (2015). The Drought Trend and Its Relationship with Rainfall Intensity in The Loess Plateau of China. Natural Hazards, 77(1), 479-495.
  • Xiong, L., & Zhu, J. (2002). Molecular and Genetic Aspects of Plant Responses to Osmotic Stress. Plant Cell Environment. 25(2),131–9.
  • Yıldırım, M., Bahar, E., & Demirel, K. (2015). Farklı Sulama Suyu Seviyelerinin Serada Yetiştirilen Kıvırcık Marulun (Lactuca sativa var. campania) Verimi ve Gelişimi Üzerine Etkileri. COMU Journal of Agriculture Faculty, 3, 29-34.
  • Zahra, N., Hafeez, M.B., Kausar, A., Al Zeidi, M., Asekova, S., Siddique, K.H.M., & Farooq, M. (2023). Plant Photosynthetic Responses Under Drought Stress: Effects and Management. Journal of Agronomy and Crop Science, 209, 651–672.
  • Zhao, W. H., Liu, L. Z., Shen, Q., Yang, J. H., Han, X. Y., Tian, F., et al. (2020). Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water 12:2127. doi: 10.3390/w12082127
  • Zhou, R., Yu, X., Ottosen, C.O., Rosenqvist, E., Zhao, L., Wang, Y., & Wu, Z. (2017). Drought Stress Had a Predominant Effect Over Heat Stress on Three Tomato Cultivars Subjected to Combined Stress. BMC Plant Biology, 17(1), 24.

Farklı Sulama Seviyelerinin Bazı Domates Çesitleri Üzerine Etkileri

Yıl 2025, Cilt: 14 Sayı: 2, 156 - 167, 29.12.2025
https://doi.org/10.29278/azd.1760165

Öz

Amaç: Küresel iklim değişikliği bitkiler üzerinde olumsuz etkiler göstermektedir. Ayrıca abyotik stresler, özellikle su stresi, bitkilerde olumsuz etkiler göstermektedir. Çalışmanın amacı farklı domates çeşitlerinin genç bitki aşamasında ve farklı sulama seviyelerinde bitki gelişme açısından tepkilerinin belirlenmesidir.
Materyal ve Yöntem: Çalışma Şırnak Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümüne ait iklim odasında gerçekleştirmiştir. Materyal olarak Seminis SVTD 8008 F1 ve Hazera 5656 F1 domates çeşitleri kullanılmıştır. Substrat olarak vermikullit ve sulamada hoogland besin çözeltisi kullanılmıştır. Deneme farklı sulama stresi seviyelerinde %15, % 25, %50, %75 ve %100 (kontrol) gerçekleştirilmiştir. Yeşil aksamda 0-4 (puan) skala ile değerlendirme, yaprak sayısı, bitki boyu, bitki gövde yaş ve kuru ağırlıkları, yaprak alanı, yaprak oransal su içeriği, yapraklarda klorofil yoğunluğu (SPAD), mineral element (K, Ca) içeriği, klorofil ve karotenoid konsantrasyonları, toplam fenolik ve toplam flavonoidler belirlenmiştir. Deneme, tesadüf parselleri deneme desenine göre yapılmıştır.
Araştırma Bulguları: Denemede ölçüm sonuçlarına göre bitki boyu, bitki gövde yaş ve kuru ağırlıkları, yaprak alanı, yaprak oransal su içeriği, mineral element (K, Ca), toplam fenolik ve toplam flavonoidler istaistkisel olarak önemli farklılık gösterdiği bulunmuştur.
Sonuç: Bitkilerde su stresi koşullarında bitki üretiminde önemli sorunlar yaşanmaktadır. Özellikle bitki büyümesinde ve hücre bölünmesinde önemli derecede azalmalar bilinmektedir. Bunun doğal sonucu olarak bitkilerin yaprak sayısı, bitki boyu, yaprak alanı, gövde çapı, yaprak oransal su içeriği ve kuru madde miktarı oranlarında düşüşler olmaktadır. Çalışmada su stresi uygulanan F1-Hazera 5656 çeşidinin, F1-Seminis 8008 çeşidine göre su stresi bakımından daha toleranslı olduğu saptanmıştır.

Proje Numarası

2020.FLTP.13.01.07

Kaynakça

  • Akhoundnejad, Y., & Daşgan, H.Y. (2019). Effect of Different Irrigation Levels on Physiological Performance of Some Drought Tolerant Melon (Cucumis melo L.) Genotypes. Applied Ecology and Environmental Research, 17(4), 9997–10012.
  • Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, Transpiration, Stomatal Conductance of Some Melon (Cucumic melo L.) Genotypes Under Different Drought Stress. Fresenius Environmental Bulletin, 29(12),10974–10979.
  • Aktaş, H. (2002). Biberde Tuza Dayanıklılığın Fizyolojik Karakterizasyonu ve Kalıtımı. Ç.Ü. Fen Bilimleri Enst. Doktora Tezi, Adana, 105 sayfa
  • Alp, Y., & Kabay, T. (2017). Kuraklık Stresinin Bazı Yerli ve Ticari Domates Çeşitlerinde Bitki Gelişimi Üzerine Etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(3), 387-395
  • Anonim, (2007). Climate Change 2007: The Physical Science Basis. https://www.ipcc.ch/report/ar4/wg1/ (Son erişim tarihi: 12.06.2020)
  • Arnon, D.I. (1949). Copper Enzymes ın Isolated Chloroplast: Polyphenoloxidase in (Beta Vulgaris). Plant Physiology, 14, 1-15.
  • Ashraf, M., & Arfan, M. (2005). Gas exchange characteristics and water relations in two cultivars of Hibicus esculentus under waterlogging. Biologia Plantarum, 49 (3), 459-462.
  • Bat, M., Tunçtürk, R., & Tunçtürk, M. (2018). Kuraklık Stresi Altındaki Ekinezya (Echinacea purpurea L.)’da Deniz Yosununun Büyüme Parametreleri, Toplam Fenolik ve Antioksidan Madde Üzerine Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(3), 496-505.
  • Birgin, Ö., Akhoundnejad, Y., & Dasgan, H.Y. (2021). The Effect of Foliar Calcium Application in Tomato (Solanum lycopersicum L.) Under Drought Stress in Greenhouse Conditions. Applied Ecology and Environmental Research. 19, 2971–2982.
  • Bogale, G.A., & Erena, Z.B. (2022). Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. Journal of Applied Animal Research, 50, 471–489.
  • Catsky, J. (1974). Water Saturation Deficit (Relative Water Content), p. 136– 156. In: B. Slavik (ed.). Methods of Studying Plant Water Relations. Springer Verlag, New York.
  • Daşgan, H.Y., Koç, S., & Ekici, B. (2006). Bazı Fasulye ve Börülce Tiplerinin Tuz Stresine Tepkileri. Alatarım Dergisi, 5(1), 23 – 31
  • Dündar, Ö., Demircioğlu, H., Özkaya, O., Valizadeh, A., Daşgan, H. Y., & Akhoundnejad, Y. (2017). Organik Domates Yetiştiriciliğinde Farklı Besin Uygulamalarının Muhafaza Ve Kalite Özellikleri Üzerine Etkileri. Akademik Ziraat Dergisi, 6, 305-312
  • Egilla, J.N., Davies, F. T., & Malcolm, C. D. (2001). Effect of K on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro- and micronutrient content and root longevity. Plant and Soil, 229(2), 213-224.
  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu1, C., Wang,D. & Huang, J. (2017). Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8, 1147.
  • Fang, Y., & Xiong, L. (2015). General Mechanisms of Drought Response and Their Application in Drought Resistance İmprovement in Plants. Cellular And Molecular Life Sciences, 72, 673-689.
  • FAO, (2023). Food and Agriculture Organization Corporate Statistical Database
  • Ford, N.A., & Erdman, J.W.Jr. (2012). Arely Copene Metabolites Metabolically Active. Acta biochimica polonica, 59, 1-4.
  • Geravandi, M., Farshadfar, E., & Kahrizi, D. (2011). Evaluation of Some Physiological Traits as İndicators of Drought Tolerance in Bread Wheat Genotypes. Russian Journal of Plant Physiology, 58 (1), 69-75.
  • Gerszberg, A., Hnatuszko-Konka, K., Kowalczyk, T. & Kononowicz, A. K. (2015). Tomato (Solanum lycopersicum L.) in The Service of Biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 881-902.
  • Günes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E., & Guzelordu, T. (2006). Genotypic Response of Chicpea (Cicer arietinum L.) Cultivars to Drought Stress İmplemented at Pre and Post Anthesis Stages and Its Relations With Nutrient Uptake and Efficiency. Plant Soil and Environment, 52, 368- 376.
  • Hao, Z., Singh, V. P., Xia, Y. (2018). Seasonal drought prediction: advances, challenges, and future prospects. Reviews of Geophysics 56, 108–141. doi: 10.1002/2016RG000549
  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 7, 1029.
  • Kacar, B., Katkat. B., & Öztürk, Ş. (2006). Bitki Fizyolojisi. Nobel Yayım Dağıtım. 2, 493- 533.
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). The Effects of Drought on Plants and Tolerance Mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • Kaya, A., & İnan, M. (2017). Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi. 21(3): 332- 342
  • Keleş, Y., & Öncel, I. (2002). Buğday fidelerinde büyüme ve pigment içeriği üzerine sıcaklık ve su-tuz streslerinin birlikte etkileri. Australian Journal of Science and Technology (AJST), 3(1), 143-152
  • Korkmaz, K., Bolat, I., Karakas, S, & Dikilitas, M. (2022). Responses to single and combined application of Humic acid and silicon under water stress on strawberry. Erwerbs-Obstbau. https://doi.org/10.1007/s10341-022-00692-9
  • Kuşvuran, Ş. (2010). Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar. Çukurova Üniversitesi Fen Bilimleri Enst., Bahçe Bitkileri Anabilim Dalı, Doktora Tezi, Adana, 356 s.
  • Kuşvuran, Ş., Daşgan, H.Y., & Abak, K. (2008). Farklı Bamya Genotiplerinin Kuraklık Stresine Tepkileri. VII. Sebze Tarımı Sempozyumu, 26-29 Ağustos 2008, Yalova.
  • Martínez-Valderrama, J., Olcina, J., Delacámara, G., Guirado, E., & Maestre, F.T. (2023). Complex Policy Mixes are Needed to Cope With Agricultural Water Demands under Climate Change. Water Resour Manage, 37(6):2805–2834
  • Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Ratna Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. (2017). Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in Plant Science, 8, 172. doi:10.3389/fpls.2017.00172
  • Molina-Quijada, D.M.A., Medina-Juárez, L.A., González-Aguilar, G.A., RoblesSánchez, R.M., & Gámez-Meza, N. (2010). Compuestos Fenólicosy Actividad Antioxidante de Cáscara de Uva (Vitis vinifera L.) de Mesa Cultivada en el Noroeste de México Phenolic Compounds and Antioxidant Activity of Table Grape (Vitis vinifera L.) Skin From Northwest Mexico. CyTA--Journal of Food, 8(1), 57-63.
  • Öztürk, N. Z. (2015). Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3, 307-315.
  • Sadak, A., 2018. Kuraklık Stresi Altındaki Biber Fidelerinde PGPR Uygulamalarının Etkisi Van Yüzüncüyıl Üniversitesi. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 28s, Van
  • Sandman, G.,Romer, S., & Fraser, P.D. (2006). Understanding Carotenoid Metabolism as a Necessity for Genetic Engineering of Cropplants. Metabolic Engineering, 8, 291–302
  • Sankar, B., Abdul Jaleel, C., Manıvannan, P., Kıshorekumar, A., Somasundaram, R., & Panneerselvan, R. (2008). Relative Efficacy of Water Use in Five Varieties of Abelmoschus esculentus (L.) Moench. under Water Limited Conditions. Biointerfaces, 62, 125-129.
  • Schröder, F.G., & J.H. Lieth. (2002). Irrigation control in hydroponics. Pages 263-298,in Hydroponic Production of Vegetables and Ornamentals. Ed. D. Savvas and H. Passam, Embryo Publications, Athens
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of Total Phenolics With Phosphomolybdic- Phosphotungstic Acid Reagents, The American Journal of Enology and Viticulture, 16, 144-158.
  • Taiz, L., & Zeiger, E. (2006). Plant Physiology. 4th. Sinauer Associate, Sunderland, Mass., EUA.F
  • Thompson, K. A., Marshall, M. R., Sims, C. A., Wei, C. I., Sargent, S. A., & Scott, J. W. (2000). Cultivar, Maturity, and Heat Treatment on Lycopene Content in Tomatoes. Journal of Food Science, 65(5), 791-795.
  • Tiryaki, T. (2018). Su Stresinin Yağ Gülü (Rosa Damascena Mill.) Fidanlarında Morfolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü.
  • Tomozeiu, R., Pasqui, M., & Quaresima, S. (2018). Future Changes of Air Temperature over Italian Agricultural Areas: A Statistical Downscaling Technique Applied to 2021–2050 and 2071–2100 Periods. Meteorology and Atmospheric Physics, 130, 543–563.
  • TÜİK, (2023). Türkiye İstaistik Kurumu. Bitkisel Üretim İstatistikleri.
  • Turner, N.C. (1981). Techniques and Experimental Approaches for the Measurement of Plant Water Stress. Plant Soil, 58,339-366.
  • Wang, J.H., Geng, L.H., & Zhang, C.M. (2012). Research on The Weak Signal Detecting Technique for Crop Water Stres Based on Wavelet Denoising. Advanced Materials Research, 424/425, 966–970.
  • Wang, L.N., Zhu, Q.K., Zhao, W.J., & Zhao, X.K. (2015). The Drought Trend and Its Relationship with Rainfall Intensity in The Loess Plateau of China. Natural Hazards, 77(1), 479-495.
  • Xiong, L., & Zhu, J. (2002). Molecular and Genetic Aspects of Plant Responses to Osmotic Stress. Plant Cell Environment. 25(2),131–9.
  • Yıldırım, M., Bahar, E., & Demirel, K. (2015). Farklı Sulama Suyu Seviyelerinin Serada Yetiştirilen Kıvırcık Marulun (Lactuca sativa var. campania) Verimi ve Gelişimi Üzerine Etkileri. COMU Journal of Agriculture Faculty, 3, 29-34.
  • Zahra, N., Hafeez, M.B., Kausar, A., Al Zeidi, M., Asekova, S., Siddique, K.H.M., & Farooq, M. (2023). Plant Photosynthetic Responses Under Drought Stress: Effects and Management. Journal of Agronomy and Crop Science, 209, 651–672.
  • Zhao, W. H., Liu, L. Z., Shen, Q., Yang, J. H., Han, X. Y., Tian, F., et al. (2020). Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water 12:2127. doi: 10.3390/w12082127
  • Zhou, R., Yu, X., Ottosen, C.O., Rosenqvist, E., Zhao, L., Wang, Y., & Wu, Z. (2017). Drought Stress Had a Predominant Effect Over Heat Stress on Three Tomato Cultivars Subjected to Combined Stress. BMC Plant Biology, 17(1), 24.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı, Sera Bitkileri Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Uğur Avuk 0000-0002-8723-6504

Yelderem Akhoundnejad 0000-0002-1435-864X

Mehmet Şimşek 0000-0002-9552-1743

Proje Numarası 2020.FLTP.13.01.07
Gönderilme Tarihi 11 Ağustos 2025
Kabul Tarihi 10 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Avuk, U., Akhoundnejad, Y., & Şimşek, M. (2025). Effects of Different Irrigation Levels on Some Tomato Cultivars. Akademik Ziraat Dergisi, 14(2), 156-167. https://doi.org/10.29278/azd.1760165