Araştırma Makalesi
BibTex RIS Kaynak Göster

Pythium, Globisporangium ve Phytopythium İzolatlarındaki Farklılaşan Termal Nişlerin, Sıcaklığa Bağlı Misel Gelişiminin Doğrusal Olmayan Modelleme ile Belirlenmesi

Yıl 2025, Cilt: 14 Sayı: 2, 189 - 203, 29.12.2025
https://doi.org/10.29278/azd.1763477

Öz

Amaç: Bu çalışmanın amacı, ekonomik öneme sahip oomycete'lerin (Pythium dissotocum, Globisporangium heterothallicum, G. intermedium, G. sylvaticum ve Phytopythium vexans) termal biyolojisini karakterize etmek için en uygun matematiksel modeli belirlemek ve bu modelleri kullanarak patojenlerin sıcaklık nişlerini ortaya çıkarmaktır. Bu sayede, hastalık epidemiyolojisi ve iklime dayalı yönetim stratejileri için temel bir anlayış oluşturulması hedeflenmektedir.
Materyal ve Yöntem: Çalışmada, Pythium dissotocum, Globisporangium heterothallicum, G. intermedium, G. sylvaticum ve Phytopythium vexans'a ait 18 izolat materyal olarak kullanılmıştır. Bu izolatların misel gelişimlerine ilişkin deneysel veriler toplanmıştır. Toplanan veriler, on dört farklı doğrusal olmayan model kullanılarak analiz edilmiştir. Modellerin performansı, bilgi-teorik bir yaklaşımla karşılaştırılarak çok kriterli bir değerlendirmeye tabi tutulmuştur.
Araştırma Bulguları: Yapılan karşılaştırmalar sonucunda, asimetrik fonksiyonların, özellikle de Briere2 modelinin, oomycete'lerin doğrusal olmayan termal tepkilerini tanımlamada üstün olduğu kanıtlanmıştır. Briere2 modeli, incelenen 18 izolattan 12'si için en uygun model olarak belirlenmiştir. Bu modelleme ile patojenlerin termal nişlerinde belirgin bir ayrım gözlemlenmiştir: P. vexans (Topt: 26.46–26.98°C) ve G. sylvaticum (Topt: 25.58–27.16°C) izolatları daha sıcak iklimlere adaptasyon gösterirken, G. heterothallicum (Topt: 20.65–22.06°C) daha serin termal optimumlara sahip olduğu saptanmıştır.
Sonuç: Bu çalışma, oomycete'lerin termal biyolojisini modellemek için kesin bir metodolojik örnek oluşturmuş ve bu patojenler için kritik ampirik parametreler sağlamıştır. Elde edilen bulgular, tarımsal ortamlarda tahmine dayalı hastalık izleme sistemlerini geliştirmek ve iklim değişikliğine uyumlu, sağlam yönetim stratejileri formüle etmek için temel bir zemin sunmaktadır.

Kaynakça

  • Al-Sheikh, H. & Abdelzaher, H.M.A. (2012). Occurrence, identification and pathogenicity of Pythium aphanidermatum, P. diclinum, P. dissotocum and Pythium "Group P" isolated from Dawmat Al-Jandal Lake, Saudi Arabia. Research Journal of Environmental Sciences, 6: 196-209. https://doi.org/10.3923/rjes.2012.196.209
  • Angilletta, M. J., Jr. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31(7), 541–545. https://doi.org/10.1016/j.jtherbio.2006.06.002
  • Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1
  • Bala, K., Robideau, G. P., Lévesque, A., de Cock, A. W. A. M., Abad, Z. G., Lodhi, A. M., Shahzad, S., Ghaffar, A., & Coffey, M. D. (2010). Phytopythium Abad, de Cock, Bala, Robideau & Levesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad & Levesque, sp. nov. Persoonia (Fungal Planet) 24:136–137. https://doi.org/10.3767/003158510X512748
  • Baten, M. A., Asano, T., Motohashi, K., Ishiguro, Y., Rahman, M. Z., Inaba, S., Suga, H., & Kageyama, K. (2014). Phylogenetic relationships among Phytopythium species, and re-evaluation of Phytopythium fagopyri comb. nov., recovered from damped-off buckwheat seedlings in Japan. Mycological Progress 13:1145–1156. https://doi.org/10.1007/s11557-014-1003-1
  • Beakes, G., & Thines, M. (2016). Hyphochytriomycota and Oomycota. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman CP, Corliss JO (eds) Handbook of the protists. Springer International Publishing AG, Basel, pp 435–505.
  • Bennett, R. M., de Cock, A. W. A. M., Lévesque, C. A., & Thines, M. (2017). Calycofera gen. nov., an estuarine sister taxon to Phytopythium, Peronosporaceae. Mycological Progress 16:947–954. https://doi.org/10.1007/s11557-017-1326-9
  • Broughall, J. M., Anslow, P. A., & Kilsby, D. C. (1983). Hazard analysis applied to microbial growth in foods: Development of mathematical models describing the effect of water activity. Journal of Applied Bacteriology, 55(1), 181–190. https://doi.org/10.1111/j.13652672.1983.tb02653.x
  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer. https://doi.org/10.1007/b97636
  • Cantrell, H. F., & Dowler W. M. (1971). Effects of temperature and pH on growth and composition of Pythium irregulare and Pythium vexans. Mycologia 63:31–37. https://doi.org/10.1080/00275514.1971.12019079
  • de Cock, A. W. A. M., Lodhi, A. M., Rintoul, T. L., Bala, K., Robideau, G. P., Abad, Z. G., Coffey, M. D., Shahzad, S., & Lévesque, C. A. (2015). Phytopythium: molecular phylogeny and systematics. Persoonia 34:25–39. https://doi.org/10.3767/003158515x685382
  • Gajewski, Z., Stevenson, L. A., Pike, D. A., Roznik, E. A., Alford, R. A., & Johnson, L. R. (2021). Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecology and Evolution, 11(24), 17920–17931. https://doi.org/10.1002/ece3.8379
  • Hsu, D.-S., & Hendrix, F. F. (1972). Influence of temperature on oospore formation of four heterothallic Pythium spp. Mycologia 64: 447–451. https://doi.org/10.2307/3757854
  • Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease 70:1038–1043. https://doi.org/10.1094/PD-70-1038.
  • Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. (2008). Ainsworth & Bisby’s Dictionary of the Fungi, 10th edn. CAB International, Wallingford.
  • Kingsolver, J. G., Higgins, J. K., & Augustine, K. E. (2015). Fluctuating temperatures and ectotherm growth: Distinguishing non-linear and time-dependent effects. Journal of Experimental Biology, 218(14), 2218–2225. https://doi.org/10.1242/jeb.120733
  • Kumar, A., Reeja, S. T., Bhai, R. S., & Shiva, K. N. (2008). Distribution of Pythium myriotylum Drechsler causing soft rot of ginger. Journal of Spices and Aromatic Crops, 17(1), 5-10.
  • Laine, A.-L. (2008). Temperature-mediated patterns of local adaptation in a natural plant–pathogen metapopulation. Ecology Letters, 11(4), 327–337. https://doi.org/10.1111/j.1461-0248.2007.01146.x
  • Levesque, C. A., & De Cock, A. W. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108(12), 1363-1383. https://doi.org/10.1017/S0953756204001431
  • Logan, J. A., Wollkind, D. J., Hoyt, S. C., & Tanigoshi, L. K. (1976). An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5(6), 1133–1140. https://doi.org/10.1093/ee/5.6.1133
  • López, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., & France, J. (2004). Statistical evaluation of mathematical models for microbial growth. International Journal of Food Microbiology, 96(3), 289–300. https://doi.org/10.1016/j.ijfoodmicro.2004.03.026
  • Lou, W., & Nakai, S. (2001). Application of artificial neural networks for predicting the thermal inactivation of bacteria: A combined effect of temperature, pH and water activity. Food Research International, 34(7), 573–579. https://doi.org/10.1016/S0963-9969(01)00074-6
  • Marano, A. V., Jesus, A. L., de Souza, J. I., Leano, E. M., James, T. Y., Jerônimo, G. H., de Cock A. W. A. M., & Pires-Zottarelli C. L. A. (2014). A new combination in Phytopythium: P. kandeliae (Oomycetes, Straminipila). Mycosphere 5:510–522. https://doi.org/10.5943/mycosphere/5/4/3
  • McKellar, M. E., & Nelson, E. B. (2003). Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Applied and Environmental Microbiology, 69(1), 452-460. https://doi.org/10.1128/AEM.69.1.452-460.2003
  • Omuse, E. R., Niassy, S., Wagacha, J. M., Ong’amo, G. O., Azrag, A. G. A., & Dubois, T. (2022). Suitable models to describe the effect of temperature on conidial germination and mycelial growth of Metarhizium anisopliae and Beauveria bassiana. Biocontrol Science and Technology, 32(3), 299–314. https://doi.org/10.1080/09583157.2021.1993133
  • Panagou, E. Z., Kodogiannis, V., & Nychas, G. E. (2007). Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 117(3), 276–286. https://doi.org/10.1016/j.ijfoodmicro.2007.03.010
  • Pimentel, C. S., & Ayres, M. P. (2018). Latitudinal patterns in temperature-dependent growth rates of a forest pathogen. Journal of Thermal Biology, 72, 39–43. https://doi.org/10.1016/j.jtherbio.2017.11.018
  • Portet, S. (2020). A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling, 5, 111–128. https://doi.org/10.1016/j.idm.2019.12.010
  • Rai, M., Abd-Elsalam, K. A., & Ingle, A. P. (Eds.). (2020). Pythium: diagnosis, diseases and management. CRC Press.
  • Rai, M., Ingle, A. P., Paralikar, P., Anasane, N., Gade, R., & Ingle, P. (2018). Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Applied Microbiology and Biotechnology, 102(16), 6827-6839. https://doi.org/10.1007/s00253-018-9145-8
  • Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154(3), 1222–1226. https://doi.org/10.1128/jb.154.3.1222-1226.1983
  • Ross, T., & Dalgaard, P. (2004). Secondary models. In R. C. McKeller & X. Lu (Eds.), Modeling microbial responses in foods (pp. 63–150). CRC Press.
  • Rossman, D. R., Rojas, A., Jacobs, J. L., Mukankusi, C., Kelly, J. D., & Chilvers, M. I. (2017). Pathogenicity and virulence of soilborne oomycetes on Phaseolus vulgaris. Plant Disease, 101(11), 1851-1859. https://doi.org/10.1094/PDIS-02-17-0178-RE
  • Schoolfield, R. M., Sharpe, P. J. H., & Magnuson, C. E. (1981). Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88(4), 719–731. https://doi.org/10.1016/0022-5193(81)90246-0
  • Shapiro, R. S., & Cowen, L. E. (2012). Thermal control of microbial development and virulence: Molecular mechanisms of microbial temperature sensing. mBio, 3(5), e00238-12. https://doi.org/10.1128/mBio.00238-12
  • Smits, N., Brière, J.-F., & Fargues, J. (2003). Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycological Research, 107(12), 1476–1484. https://doi.org/10.1017/S095375620300844X
  • Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32, 307-321. https://doi.org/10.1590/S0100-54052006000400001
  • Tambong, J. T., De Cock, A. W. A. M., Tinker, N. A., & Lévesque, C. A. (2006). Oligonucleotide array for identification and detection of Pythium species. Applied and Environmental Microbiology, 72(4), 2691-2706. https://doi.org/10.1128/AEM.72.4.2691-2706.2006
  • Türkkan, M., Özer, G., Karaca, G., Erper, İ., & Derviş, S. (2022). Characterization and pathogenicity of Pythium-like species associated with root and collar rot of kiwifruit in Turkey. Plant Disease, 106(3), 854-863. https://doi.org/10.1094/PDIS-05-21-0961-RE
  • Uzuhashi, S., Tojo, M., & Kakishima, M. (2010). Phylogeny of the genus Pythium and description of new genera. Mycoscience 51:337–365. https://doi.org/10.1007/S10267-010-0046-7
  • van der Plaats-Niterink, A. J. 1981. Monograph of the genus Pythium. Studies in Mycology 21:1–242.

Nonlinear Modeling of Temperature-Driven Mycelial Growth Reveals Divergent Thermal Niches in Pythium, Globisporangium, and Phytopythium Isolates

Yıl 2025, Cilt: 14 Sayı: 2, 189 - 203, 29.12.2025
https://doi.org/10.29278/azd.1763477

Öz

Objective: The purpose of this research is to identify the most suitable mathematical model for characterizing the thermal biology of economically important oomycetes (Pythium dissotocum, Globisporangium heterothallicum, G. intermedium, G. sylvaticum, and Phytopythium vexans) and to use these models to define the thermal niches of these pathogens. The goal is to establish a fundamental understanding for disease epidemiology and climate-driven management strategies.
Materials and Methods: In this study, 18 isolates belonging to Pythium dissotocum, Globisporangium heterothallicum, G. intermedium, G. sylvaticum, and Phytopythium vexans were used as material. Empirical data on the mycelial growth of these isolates were collected. The collected data were analyzed using fourteen different nonlinear models. The performance of the models was subjected to a multi-criteria evaluation and compared using an information-theoretic approach.
Results: The comparisons unequivocally demonstrated the superiority of asymmetric functions, most notably the Briere2 model, in describing the nonlinear thermal responses of the oomycetes. The Briere2 model was identified as the optimal model for 12 of the 18 isolates studied. This modeling revealed a distinct partitioning of thermal niches: P. vexans (Topt: 26.46–26.98°C) and G. sylvaticum (Topt: 25.58–27.16°C) isolates showed clear adaptations to warmer climates, in contrast to the cooler thermal optima of G. heterothallicum (Topt: 20.65–22.06°C).
Conclusion: This work establishes a definitive methodological precedent for modeling the thermal biology of oomycetes and provides critical empirical parameterization for these pathogens. The findings offer an essential foundation for advancing predictive disease forecasting and for formulating robust, climate-driven management strategies in agricultural environments.

Kaynakça

  • Al-Sheikh, H. & Abdelzaher, H.M.A. (2012). Occurrence, identification and pathogenicity of Pythium aphanidermatum, P. diclinum, P. dissotocum and Pythium "Group P" isolated from Dawmat Al-Jandal Lake, Saudi Arabia. Research Journal of Environmental Sciences, 6: 196-209. https://doi.org/10.3923/rjes.2012.196.209
  • Angilletta, M. J., Jr. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31(7), 541–545. https://doi.org/10.1016/j.jtherbio.2006.06.002
  • Angilletta, M. J., Jr. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1
  • Bala, K., Robideau, G. P., Lévesque, A., de Cock, A. W. A. M., Abad, Z. G., Lodhi, A. M., Shahzad, S., Ghaffar, A., & Coffey, M. D. (2010). Phytopythium Abad, de Cock, Bala, Robideau & Levesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad & Levesque, sp. nov. Persoonia (Fungal Planet) 24:136–137. https://doi.org/10.3767/003158510X512748
  • Baten, M. A., Asano, T., Motohashi, K., Ishiguro, Y., Rahman, M. Z., Inaba, S., Suga, H., & Kageyama, K. (2014). Phylogenetic relationships among Phytopythium species, and re-evaluation of Phytopythium fagopyri comb. nov., recovered from damped-off buckwheat seedlings in Japan. Mycological Progress 13:1145–1156. https://doi.org/10.1007/s11557-014-1003-1
  • Beakes, G., & Thines, M. (2016). Hyphochytriomycota and Oomycota. In: Archibald JM, Simpson AGB, Slamovits CH, Margulis L, Melkonian M, Chapman CP, Corliss JO (eds) Handbook of the protists. Springer International Publishing AG, Basel, pp 435–505.
  • Bennett, R. M., de Cock, A. W. A. M., Lévesque, C. A., & Thines, M. (2017). Calycofera gen. nov., an estuarine sister taxon to Phytopythium, Peronosporaceae. Mycological Progress 16:947–954. https://doi.org/10.1007/s11557-017-1326-9
  • Broughall, J. M., Anslow, P. A., & Kilsby, D. C. (1983). Hazard analysis applied to microbial growth in foods: Development of mathematical models describing the effect of water activity. Journal of Applied Bacteriology, 55(1), 181–190. https://doi.org/10.1111/j.13652672.1983.tb02653.x
  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). Springer. https://doi.org/10.1007/b97636
  • Cantrell, H. F., & Dowler W. M. (1971). Effects of temperature and pH on growth and composition of Pythium irregulare and Pythium vexans. Mycologia 63:31–37. https://doi.org/10.1080/00275514.1971.12019079
  • de Cock, A. W. A. M., Lodhi, A. M., Rintoul, T. L., Bala, K., Robideau, G. P., Abad, Z. G., Coffey, M. D., Shahzad, S., & Lévesque, C. A. (2015). Phytopythium: molecular phylogeny and systematics. Persoonia 34:25–39. https://doi.org/10.3767/003158515x685382
  • Gajewski, Z., Stevenson, L. A., Pike, D. A., Roznik, E. A., Alford, R. A., & Johnson, L. R. (2021). Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecology and Evolution, 11(24), 17920–17931. https://doi.org/10.1002/ece3.8379
  • Hsu, D.-S., & Hendrix, F. F. (1972). Influence of temperature on oospore formation of four heterothallic Pythium spp. Mycologia 64: 447–451. https://doi.org/10.2307/3757854
  • Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease 70:1038–1043. https://doi.org/10.1094/PD-70-1038.
  • Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. (2008). Ainsworth & Bisby’s Dictionary of the Fungi, 10th edn. CAB International, Wallingford.
  • Kingsolver, J. G., Higgins, J. K., & Augustine, K. E. (2015). Fluctuating temperatures and ectotherm growth: Distinguishing non-linear and time-dependent effects. Journal of Experimental Biology, 218(14), 2218–2225. https://doi.org/10.1242/jeb.120733
  • Kumar, A., Reeja, S. T., Bhai, R. S., & Shiva, K. N. (2008). Distribution of Pythium myriotylum Drechsler causing soft rot of ginger. Journal of Spices and Aromatic Crops, 17(1), 5-10.
  • Laine, A.-L. (2008). Temperature-mediated patterns of local adaptation in a natural plant–pathogen metapopulation. Ecology Letters, 11(4), 327–337. https://doi.org/10.1111/j.1461-0248.2007.01146.x
  • Levesque, C. A., & De Cock, A. W. (2004). Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research, 108(12), 1363-1383. https://doi.org/10.1017/S0953756204001431
  • Logan, J. A., Wollkind, D. J., Hoyt, S. C., & Tanigoshi, L. K. (1976). An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5(6), 1133–1140. https://doi.org/10.1093/ee/5.6.1133
  • López, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., & France, J. (2004). Statistical evaluation of mathematical models for microbial growth. International Journal of Food Microbiology, 96(3), 289–300. https://doi.org/10.1016/j.ijfoodmicro.2004.03.026
  • Lou, W., & Nakai, S. (2001). Application of artificial neural networks for predicting the thermal inactivation of bacteria: A combined effect of temperature, pH and water activity. Food Research International, 34(7), 573–579. https://doi.org/10.1016/S0963-9969(01)00074-6
  • Marano, A. V., Jesus, A. L., de Souza, J. I., Leano, E. M., James, T. Y., Jerônimo, G. H., de Cock A. W. A. M., & Pires-Zottarelli C. L. A. (2014). A new combination in Phytopythium: P. kandeliae (Oomycetes, Straminipila). Mycosphere 5:510–522. https://doi.org/10.5943/mycosphere/5/4/3
  • McKellar, M. E., & Nelson, E. B. (2003). Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Applied and Environmental Microbiology, 69(1), 452-460. https://doi.org/10.1128/AEM.69.1.452-460.2003
  • Omuse, E. R., Niassy, S., Wagacha, J. M., Ong’amo, G. O., Azrag, A. G. A., & Dubois, T. (2022). Suitable models to describe the effect of temperature on conidial germination and mycelial growth of Metarhizium anisopliae and Beauveria bassiana. Biocontrol Science and Technology, 32(3), 299–314. https://doi.org/10.1080/09583157.2021.1993133
  • Panagou, E. Z., Kodogiannis, V., & Nychas, G. E. (2007). Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 117(3), 276–286. https://doi.org/10.1016/j.ijfoodmicro.2007.03.010
  • Pimentel, C. S., & Ayres, M. P. (2018). Latitudinal patterns in temperature-dependent growth rates of a forest pathogen. Journal of Thermal Biology, 72, 39–43. https://doi.org/10.1016/j.jtherbio.2017.11.018
  • Portet, S. (2020). A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling, 5, 111–128. https://doi.org/10.1016/j.idm.2019.12.010
  • Rai, M., Abd-Elsalam, K. A., & Ingle, A. P. (Eds.). (2020). Pythium: diagnosis, diseases and management. CRC Press.
  • Rai, M., Ingle, A. P., Paralikar, P., Anasane, N., Gade, R., & Ingle, P. (2018). Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Applied Microbiology and Biotechnology, 102(16), 6827-6839. https://doi.org/10.1007/s00253-018-9145-8
  • Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154(3), 1222–1226. https://doi.org/10.1128/jb.154.3.1222-1226.1983
  • Ross, T., & Dalgaard, P. (2004). Secondary models. In R. C. McKeller & X. Lu (Eds.), Modeling microbial responses in foods (pp. 63–150). CRC Press.
  • Rossman, D. R., Rojas, A., Jacobs, J. L., Mukankusi, C., Kelly, J. D., & Chilvers, M. I. (2017). Pathogenicity and virulence of soilborne oomycetes on Phaseolus vulgaris. Plant Disease, 101(11), 1851-1859. https://doi.org/10.1094/PDIS-02-17-0178-RE
  • Schoolfield, R. M., Sharpe, P. J. H., & Magnuson, C. E. (1981). Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88(4), 719–731. https://doi.org/10.1016/0022-5193(81)90246-0
  • Shapiro, R. S., & Cowen, L. E. (2012). Thermal control of microbial development and virulence: Molecular mechanisms of microbial temperature sensing. mBio, 3(5), e00238-12. https://doi.org/10.1128/mBio.00238-12
  • Smits, N., Brière, J.-F., & Fargues, J. (2003). Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycological Research, 107(12), 1476–1484. https://doi.org/10.1017/S095375620300844X
  • Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32, 307-321. https://doi.org/10.1590/S0100-54052006000400001
  • Tambong, J. T., De Cock, A. W. A. M., Tinker, N. A., & Lévesque, C. A. (2006). Oligonucleotide array for identification and detection of Pythium species. Applied and Environmental Microbiology, 72(4), 2691-2706. https://doi.org/10.1128/AEM.72.4.2691-2706.2006
  • Türkkan, M., Özer, G., Karaca, G., Erper, İ., & Derviş, S. (2022). Characterization and pathogenicity of Pythium-like species associated with root and collar rot of kiwifruit in Turkey. Plant Disease, 106(3), 854-863. https://doi.org/10.1094/PDIS-05-21-0961-RE
  • Uzuhashi, S., Tojo, M., & Kakishima, M. (2010). Phylogeny of the genus Pythium and description of new genera. Mycoscience 51:337–365. https://doi.org/10.1007/S10267-010-0046-7
  • van der Plaats-Niterink, A. J. 1981. Monograph of the genus Pythium. Studies in Mycology 21:1–242.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm Araştırma Makalesi
Yazarlar

Muharrem Türkkan 0000-0001-7779-9365

Göksel Özer 0000-0002-3385-2520

Sibel Derviş 0000-0002-4917-3813

Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 1 Ekim 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Türkkan, M., Özer, G., & Derviş, S. (2025). Nonlinear Modeling of Temperature-Driven Mycelial Growth Reveals Divergent Thermal Niches in Pythium, Globisporangium, and Phytopythium Isolates. Akademik Ziraat Dergisi, 14(2), 189-203. https://doi.org/10.29278/azd.1763477