Araştırma Makalesi
BibTex RIS Kaynak Göster

Artlı koyununda sıcaklık stresiyle ilişkili HSPA8 geninde eşanlamlı olmayan baz değişimi tespit edildi

Yıl 2025, Cilt: 14 Sayı: 2, 304 - 312, 29.12.2025
https://doi.org/10.29278/azd.1793271

Öz

Amaç: İklim değişikliği, günümüzde insanlığın karşı karşıya olduğu çok boyutlu küresel krizlerin temelinde yer almaktadır. Koyun yetiştiriciliği, küresel gıda güvenliğinin sürdürülebilirliğinde kilit bir rol oynamaktadır. Artan küresel sıcaklık artışına bağlı oluşan sıcaklık stresi, koyun ırklarının bu strese karşı dayanıklılığını belirleyen genler açısından genetik olarak iyileştirilmesini zorunlu kılmaktadır. Bu çalışmada, Artlı ve Çepni koyun popülasyonlarında önemli ısı şoku proteinlerinden biri olan HSPA8 geninin sekizinci ekzonundaki tek nükleotid polimorfizmlerinin (SNP), Sanger dizileme yöntemi kullanılarak taranması amaçlanmıştır.
Materyal ve Yöntem: HSPA8 geninin sekizinci ekzon bölgesi dizilenmiş ve elde edilen dizilerdeki SNP'ler, MEGA X yazılımı kullanılarak belirlenmiştir. Tespit edilen mutasyonların protein yapısı üzerindeki potansiyel etkileri HOPE yazılımı ile modellenmiştir. Ayrıca, protein yapısının tahmin doğruluğunu değerlendirmek amacıyla AlphaFold2 yazılımı kullanılarak güvenilirlik değerleri (pLDDT) elde edilmiştir.
Araştırma Bulguları: Artlı koyunlarının, geleneksel olarak düşük sıcaklık stresine ve zorlu çevresel koşullara karşı yüksek direnç gösterdiği bilinmektedir. Analiz edilen Artlı koyun örneklerinin %50’sinde HSPA8 geninin 8. ekzonun 210. nükleotid pozisyonunda gerçekleşen C>T değişimi sonucunda 605. amino asit olan prolinin, lösin ile yer değiştirdiği tespit edilmiştir. Ayrıca Artlı genotiplerinin %40’ında, 8. ekzonun 46. nükleotid pozisyonunda heterozigot durumda bulunan ve 550. amino asit pozisyonunda sessiz mutasyona neden olan G>A değişimi gözlenmiştir. Buna karşın, Çepni ırkına ait örneklerin tamamının incelenen ekzon bölgesi bakımından monomorfik yapıda olduğu belirlenmiştir.
Sonuç: İklim değişikliğine adaptasyonun genetik temelini; mutasyonlarla birlikte genler arası epistatik etkileşimler ve epigenetik düzenleyici mekanizmalar gibi diğer genetik süreçler oluşturmaktadır. Küresel iklim değişikliğinin bir sonucu olarak ortaya çıkan sıcaklık artışları çiftlik hayvanlarında verimliliğin azalmasına neden olmaktadır. Sürdürülebilir koyun yetiştiriciliği, Artlı ve Çepni gibi yerel koyun ırklarının potansiyel ıslah materyali olarak değerlendirilmesine bağlıdır. Bu nedenle bu özgün genotipler üzerinde kapsamlı genetik araştırmaların yürütülmesine, yerel ırkların korunmasına yönelik çabaların da artırılmasına gereksinim bulunmaktadır.

Destekleyen Kurum

OMÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

PYO.ZRT.1908.22.021

Kaynakça

  • Al-Shuhaib, M. B. S., & Hashim, H. O. (2023). Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. Journal of Genetic Engineering and Biotechnology, 21(1), 115.
  • Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Hussein, Z. M. (2020). A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Tropical Animal Health and Production, 52(5), 2405-2416.
  • Astuti, P. K., Ilie, D. E., Gavojdian, D., Wanjala, G., Badaoui, B., Ohran, H., Kusza, S. (2022). Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique. Scientific Reports, 12(1), 22348.
  • Crossley, B. M., Bai, J., Glaser, A., Maes, R., Porter, E., Killian, M. L.,Toohey-Kurth, K. (2020). Guidelines for Sanger sequencing and molecular assay monitoring. Journal of Veterinary Diagnostic Investigation, 32(6), 767-775.
  • FAO. (2024). Sheep | Livestock Systems. Retrieved from https://www.fao.org/livestock-systems/global-distributions/sheep/en
  • Gujar, G., Tiwari, M., & Yadav, N. (2023). Heat stress adaptation in cows–physiological responses and underlying molecular mechanisms. Journal of Thermal Biology, 118, 103740.
  • Jafari, R., Javidi, M. M., & Kuchaki Rafsanjani, M. (2019). Using deep reinforcement learning approach for solving the multiple sequence alignment problem. SN Applied Sciences, 1, 1-12.
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
  • Kumar, S., Magotra, A., Kumar, N., & Bangar, Y. C. (2024). Expression and SNP profiling of HSP70 gene associated with thermotolerance traits in Munjal Sheep.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547.
  • Lang, L., Wang, Z.-Z., Bin, L., Chang-Qing, S., Jing-Yi, T., Shi-Cheng, W., Yong-Ju, Z. (2024). The effects and mechanisms of heat stress on mammalian oocyte and embryo development. Journal of Thermal Biology, 124, 103927.
  • Lehner, T., & Miller, B. L. (2016). Genomics, circuits, and pathways in clinical neuropsychiatry. London: Academic Press.
  • Luna-Nevarez, G., Kelly, A. C., Camacho, L. E., Limesand, S. W., Reyna-Granados, J. R., & Luna-Nevarez, P. (2020). Discovery and validation of candidate SNP markers associated to heat stress response in pregnant ewes managed inside a climate-controlled chamber. Tropical Animal Health and Production, 52, 3457-3466.
  • Mercan, L., Cam, M. A., Olfaz, M., Kirikci, K., Tufekci, H., & Kilic, U. (2022). Fatty acid profile and sensory properties of lamb meat from males of five indigenous breeds. Archives Animal Breeding, 65(3), 341-352.
  • Miller, S., Dykes, D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215.
  • Peng, X., Zhang, Y., Huang, X., Zhou, G., Xing, X., & Zhang, E. (2019). Effects of acute cold stress on immune function and expression of heat shock protein 70 family genes in different tissues in sheep. Acta Veterinaria et Zootechnica Sinica, 50(8), 1625-1634.
  • Raza, S. H. A., Hassanin, A. A., Dhshan, A. I., Abdelnour, S. A., Khan, R., Mei, C., & Zan, L. (2021). In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electronic Journal of Biotechnology, 53, 61-70.
  • Sauna, Z. E., & Kimchi-Sarfaty, C. (2011). Understanding the contribution of synonymous mutations to human disease. Nature Reviews Genetics, 12(10), 683-691.
  • Singh, K., Singh, S., Ganguly, I., Nachiappan, R. K., Ganguly, A., Venkataramanan, R., . . . Narula, H. (2017). Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress and Chaperones, 22(5), 675-684.
  • Tozlu Çelik, H., & Tüfekci, H. (2024). Socio-economic structure, production practices, observations and suggestions in Nomadic sheep production in Ordu province located in Black-Sea Region of Türkiye. Manas Journal of Agriculture Veterinary and Life Sciences, 14(1), 1-10.
  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115.
  • Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Yeo, J. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368-D375.
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 1-10.
  • Wen, Y., Hu, J., Wang, J., Liu, X., Li, S., & Luo, Y. (2021). Effect of glycolysis and heat shock proteins on hypoxia adaptation of Tibetan sheep at different altitude. Gene, 803, 145893.
  • Yan, W., Zhou, J., Sun, M., Chen, J., Hu, G., & Shen, B. (2014). The construction of an amino acid network for understanding protein structure and function. Amino acids, 46, 1419-1439.
  • Yasmin, T. (2022). In silico comprehensive analysis of coding and non-coding SNPs in human mTOR protein. Plos one, 17(7), e0270919.

Nonsynonymous Substitution Detected In Heat Stress-Associated HSPA8 gene in Artlı Sheep

Yıl 2025, Cilt: 14 Sayı: 2, 304 - 312, 29.12.2025
https://doi.org/10.29278/azd.1793271

Öz

Objective: Climate change lies at the core of the multifaceted global crises confronting humanity today. Sheep breeding plays a crucial role in ensuring the sustainability of global food security. Heat stress resulting from the increasing rise in global temperatures necessitates the genetic improvement of sheep breeds in terms of the genes that determine their resistance to this stress. The present study aimed to screen single-nucleotide polymorphisms (SNPs) located in the eighth exon of the HSPA8 gene, which is one of the important heat shock proteins, in Artlı and Çepni sheep populations using the Sanger sequencing method.
Material and Methods: The eighth exon region of the HSPA8 gene was sequenced, and SNPs within the obtained sequences were identified using the MEGA X software. The potential effects of the detected mutations on the protein structure were modeled using the HOPE software. In addition, to assess the accuracy of the predicted protein structure, confidence scores (pLDDT) were obtained using the AlphaFold2 software.
Results: Artlı sheep are traditionally known for their high resistance to low-temperature stress and harsh environmental conditions. In this study, a C>T substitution at the 210th nucleotide position of the 8th exon of the HSPA8 gene was detected in 50% of the analyzed Artlı sheep samples, resulting in the replacement of proline with leucine at amino acid position 605. Furthermore, 40% of the Artlı genotypes exhibited a G>A substitution at the 46th nucleotide position of the same exon, which was found to be heterozygous and caused a silent mutation at amino acid position 550. In contrast, all analyzed samples of the Çepni breed were found to be monomorphic with respect to the examined exon region.
Conclusion: The genetic basis of adaptation to climate change is shaped not only by mutations but also by other genetic processes, such as epistatic interactions between genes and epigenetic regulatory mechanisms. Rising temperatures resulting from global climate change have led to a decline in livestock productivity. Sustainable sheep breeding depends on evaluating local breeds, such as Artlı and Çepni, as potential breeding materials. Therefore, there is a need to conduct comprehensive genetic studies on these unique genotypes and to strengthen efforts aimed at conserving local breeds.

Destekleyen Kurum

OMU Scientific Research Projects Coordination Unit

Proje Numarası

PYO.ZRT.1908.22.021

Kaynakça

  • Al-Shuhaib, M. B. S., & Hashim, H. O. (2023). Mastering DNA chromatogram analysis in Sanger sequencing for reliable clinical analysis. Journal of Genetic Engineering and Biotechnology, 21(1), 115.
  • Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Hussein, Z. M. (2020). A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Tropical Animal Health and Production, 52(5), 2405-2416.
  • Astuti, P. K., Ilie, D. E., Gavojdian, D., Wanjala, G., Badaoui, B., Ohran, H., Kusza, S. (2022). Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique. Scientific Reports, 12(1), 22348.
  • Crossley, B. M., Bai, J., Glaser, A., Maes, R., Porter, E., Killian, M. L.,Toohey-Kurth, K. (2020). Guidelines for Sanger sequencing and molecular assay monitoring. Journal of Veterinary Diagnostic Investigation, 32(6), 767-775.
  • FAO. (2024). Sheep | Livestock Systems. Retrieved from https://www.fao.org/livestock-systems/global-distributions/sheep/en
  • Gujar, G., Tiwari, M., & Yadav, N. (2023). Heat stress adaptation in cows–physiological responses and underlying molecular mechanisms. Journal of Thermal Biology, 118, 103740.
  • Jafari, R., Javidi, M. M., & Kuchaki Rafsanjani, M. (2019). Using deep reinforcement learning approach for solving the multiple sequence alignment problem. SN Applied Sciences, 1, 1-12.
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Potapenko, A. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.
  • Kumar, S., Magotra, A., Kumar, N., & Bangar, Y. C. (2024). Expression and SNP profiling of HSP70 gene associated with thermotolerance traits in Munjal Sheep.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547.
  • Lang, L., Wang, Z.-Z., Bin, L., Chang-Qing, S., Jing-Yi, T., Shi-Cheng, W., Yong-Ju, Z. (2024). The effects and mechanisms of heat stress on mammalian oocyte and embryo development. Journal of Thermal Biology, 124, 103927.
  • Lehner, T., & Miller, B. L. (2016). Genomics, circuits, and pathways in clinical neuropsychiatry. London: Academic Press.
  • Luna-Nevarez, G., Kelly, A. C., Camacho, L. E., Limesand, S. W., Reyna-Granados, J. R., & Luna-Nevarez, P. (2020). Discovery and validation of candidate SNP markers associated to heat stress response in pregnant ewes managed inside a climate-controlled chamber. Tropical Animal Health and Production, 52, 3457-3466.
  • Mercan, L., Cam, M. A., Olfaz, M., Kirikci, K., Tufekci, H., & Kilic, U. (2022). Fatty acid profile and sensory properties of lamb meat from males of five indigenous breeds. Archives Animal Breeding, 65(3), 341-352.
  • Miller, S., Dykes, D., & Polesky, H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215.
  • Peng, X., Zhang, Y., Huang, X., Zhou, G., Xing, X., & Zhang, E. (2019). Effects of acute cold stress on immune function and expression of heat shock protein 70 family genes in different tissues in sheep. Acta Veterinaria et Zootechnica Sinica, 50(8), 1625-1634.
  • Raza, S. H. A., Hassanin, A. A., Dhshan, A. I., Abdelnour, S. A., Khan, R., Mei, C., & Zan, L. (2021). In silico genomic and proteomic analyses of three heat shock proteins (HSP70, HSP90-α, and HSP90-β) in even-toed ungulates. Electronic Journal of Biotechnology, 53, 61-70.
  • Sauna, Z. E., & Kimchi-Sarfaty, C. (2011). Understanding the contribution of synonymous mutations to human disease. Nature Reviews Genetics, 12(10), 683-691.
  • Singh, K., Singh, S., Ganguly, I., Nachiappan, R. K., Ganguly, A., Venkataramanan, R., . . . Narula, H. (2017). Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress and Chaperones, 22(5), 675-684.
  • Tozlu Çelik, H., & Tüfekci, H. (2024). Socio-economic structure, production practices, observations and suggestions in Nomadic sheep production in Ordu province located in Black-Sea Region of Türkiye. Manas Journal of Agriculture Veterinary and Life Sciences, 14(1), 1-10.
  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115.
  • Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., Yeo, J. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research, 52(D1), D368-D375.
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 1-10.
  • Wen, Y., Hu, J., Wang, J., Liu, X., Li, S., & Luo, Y. (2021). Effect of glycolysis and heat shock proteins on hypoxia adaptation of Tibetan sheep at different altitude. Gene, 803, 145893.
  • Yan, W., Zhou, J., Sun, M., Chen, J., Hu, G., & Shen, B. (2014). The construction of an amino acid network for understanding protein structure and function. Amino acids, 46, 1419-1439.
  • Yasmin, T. (2022). In silico comprehensive analysis of coding and non-coding SNPs in human mTOR protein. Plos one, 17(7), e0270919.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvan Biyoteknolojisi, Hayvan Üreme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Levent Mercan 0000-0002-6790-1458

Cihat Erdem Bülbül 0000-0002-8609-6239

Fatih Bilgi 0000-0002-8239-2217

Mehmet Akif Çam 0000-0003-3407-3913

Proje Numarası PYO.ZRT.1908.22.021
Gönderilme Tarihi 29 Eylül 2025
Kabul Tarihi 27 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Mercan, L., Bülbül, C. E., Bilgi, F., Çam, M. A. (2025). Nonsynonymous Substitution Detected In Heat Stress-Associated HSPA8 gene in Artlı Sheep. Akademik Ziraat Dergisi, 14(2), 304-312. https://doi.org/10.29278/azd.1793271