Araştırma Makalesi
BibTex RIS Kaynak Göster

Kavunda Meyve Gelişimi Sonrası Su Stresi Meyve Kalitesini ve Besin Alımını Etkiler mi?

Yıl 2025, Cilt: 14 Sayı: 2, 144 - 155, 29.12.2025
https://doi.org/10.29278/azd.1816514

Öz

Amaç: Kavun yetiştiriciliğinde sulama suyundan tasarruf etmek amacıyla, meyve büyümesinden hasada kadar farklı oranlarda su stresi uygulanmıştır.
Materyal ve Yöntemler: Sezon boyunca uygulanan tam sulama (kontrol-I100) ve meyve gelişimi aşamasından hasada kadar S100 konusuna verilen suyun sırasıyla %80, %60, %40, %20 ve %0'ına karşılık gelen beş farklı su stresi rejimi (I80, I60, I40, I20 ve I0) olmak üzere toplam altı farklı deneysel uygulama oluşturulmuştur.
Sonuçlar: Çalışma sonucunda, su stresi meyve kalitesinde önemli değişikliklere ve besin elementi alımında önemli farklılıklara neden olmuştur. Kavuna uygulanan su stresi, P ve K alınımında sırasıyla yaklaşık %25 ve %20 oranında bir azalmaya neden olmuştur. Ayrıca, Ca, Mg, Mn ve B alımlarında sırasıyla %74, %46, %71 ve %40'lık bir artış sağlarken, Fe alınımı yaklaşık 5,5 kat artmıştır. Artan su stresi, özellikle kavunda topraktan makro besin maddelerinin emilimini azaltmış ve meyve kalitesi üzerinde olumsuz etkilere neden olmuştur.
Sonuç: Bu çalışmada incelenen parametreler birlikte değerlendirildiğinde, I80 (%20 su stresi) uygulaması ile I100 (tam sulama) uygulamaları arasında anlamlı bir fark bulunmamıştır.

Etik Beyan

Yazarlar tarafından herhangi bir çıkar çatışması bildirilmemiştir.

Destekleyen Kurum

SELÇUK ÜNİVERSİTESİ - Bilimsel Araştırma Projeleri Otomasyonu

Proje Numarası

S.Ü/BAP-22401056

Teşekkür

Bu çalışma, Rufeyde Nur Özen'in yüksek lisans tezinden bazı veriler içermektedir. Bu çalışma, Selçuk Üniversitesi tarafından S.Ü/BAP-22401056 numaralı proje kapsamında desteklenmiştir.

Kaynakça

  • Ahanger, M. A., Morad‐Talab, N., Abd‐Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: Significance of mineral nutrients. Water Stress and Crop Plants: A Sustainable Approach, 2(1), 649–668.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome, 300(9), D05109.
  • Andersen, M. N., Jensen, C. R., & Lösch, R. (1992). The interaction effects of potassium and drought in field-grown barley. I. Yield, water-use efficiency and growth. Acta Agriculturae Scandinavica B-Plant Soil Sciences, 42(1), 34-44.
  • Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7(2), 28.
  • Cheraghi, M., Mousavi, S. M., & Zarebanadkouki, M. (2023). Functions of rhizosheath on facilitating the uptake of water and nutrients under drought stress: A review. Plant and Soil, 491(1), 239-263.
  • Dolu, H., Killi, D., Bas, S., Bilecen, D. S., & Seymen, M. (2025). Effectiveness of salt priming and plant growth-promoting bacteria in mitigating salt-induced photosynthetic damage in melon. Photosynthesis Research, 163(1), 1-17.
  • Ercan, M., Çoklar, H., Akbulut, M., Yavuz, D., Seymen, M., & Yavuz, N. (2023). Effect of irrigation regime on chemical, physico-chemical, and functional properties of melon fruits and seeds. Gesunde Pflanzen, 75(6), 2835-2845.
  • Fabeiro, C., de Santa Olalla, F. M., & De Juan, J. (2002). Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agric Water Manag, 54(2), 93–105.
  • Falah, M. A. F., Nadine, M. D., & Suryandono, A. (2015). Effects of storage conditions on quality and shelf-life of fresh-cut melon (Cucumis melo L.) and papaya (Carica papaya L.). Procedia Food Science, 3, 313-322.
  • FAO, (2024). Food and Agriculture Organization, Crop Production Statistics, http://www.fao.org/faostat /en/#data/QC. Access Date: November 10, 2024.
  • Hamdan, M. N., Razi, I. M., & Puteri Edaroyati, M. W. (2017). The effect of partial root drying and regulated deficit irrigation technique on growth of rock melon (Cucumis melo Linn cv. Glamour). J Trop Agric and Fd Sc, 45(1), 1 – 11.
  • Hartz, T. (1997). Effects of drip irrigation scheduling on muskmelon yield and quality. Sci Hortic, 69(1–2), 117–122. Itle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633-637.
  • Kyriacou, M. C., Leskovar, D. I., Colla, G., & Rouphael, Y. (2018). Watermelon and melon fruit quality: the genotypic and agro-environmental fac tors implicated. Sci Hortic, 234, 393–408.
  • Luo, L., Xia, H., & Lu, B. R. (2019). Editorial: Crop breeding for drought resistance. Front Plant Sci, 10, 314.
  • McGuire, G. R. (1992). Reporting of objective color measurements. Hortscience, 27(12), 1254-1255.
  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J of soil science and plant nutrition, 10(4), 470-481.
  • Mwadzingeni, L., Shimelis. H., Rees, D. J. G., & Tsilo,T. J. (2017). Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE, 12, e0171692.
  • Nayyar, H., & Kaushal, S. K. (2002). Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. Biol Plant, 45, 601-604.
  • Portela, S. I., & Cantwell, M. I. (1998). Quality changes of minimally processed honeydew melons stored in air or controlled atmosphere. Postharvest Biology and Technology, 14(3), 351-357.
  • Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International journal of molecular sciences, 20(13), 3137.
  • Sardans, J., Peñuelas, J., & Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39(2), 223-235.
  • Seymen, M. (2021). Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish J of Agric and Forestry, 45(1), 55-67.
  • Seymen, M., Yavuz, D., Ercan, M., Akbulut, M., Çoklar, H., Kurtar, E. S., Yavuz, N., Süheri, S., & Türkmen, Ö. (2021). Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit. Horticulture, Environment, and Biotechnology, 62(3), 411-422.
  • Seymen, M., Erçetin, M., Yavuz, D., Kıymacı, G., Kayak, N., Mutlu, A., & Kurtar, E. S. (2024). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae, 331, 113116.
  • Silva, G. D., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Brandão, S. C. R., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. Lwt, 74, 114-119.
  • Skujins, S. (1998). Handbook for ICP-AES (Varıan-Vista)”. A hort guide to vista series ICP-AES Operation. Varian Int.AGs¸Zug. Version 1.0. pp 29, Switzerland.
  • Taheri, F., Maleki, A., & Fathi, A. (2021). Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of Quinoa grain yield. Crop Physiology Journal, 13(50), 135–49.
  • Verbruggen, N., & Hermans, C. (2013). Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and soil, 368, 87-99.
  • Yavuz, D., Gökmen Yılmaz, F., Seymen, M., Korkmaz, A., & Baştaş, K. K. (2024). Effects of newly isolated rhizobacteria on the physiological characteristics and nutrient uptake of watermelon plants grafted onto different rootstocks under water stress. Journal of Crop Health, 76(4), 865-881.
  • Yavuz, D., Seymen, M., Yavuz, N., Çoklar, H., & Ercan, M. (2021). Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agricultural Water Management, 246, 106673.
  • Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., & Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation?. Agricultural Water Management, 241, 106351.
  • Yavuz, D., Seymen, M., Kal, Ü., Atakul, Z., Tanrıverdi, Ö. B., Türkmen, Ö., & Yavuz, N. (2023). Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes. Agricultural water management, 277, 108127.
  • Yavuz, N., Seymen, M., Kal, Ü., Yavuz, D., Kal, S., Kurtar, E. S., & Süheri, S. (2025a). Interactive effects of rootstock and rhizobacteria on fruit yield, evapotranspiration, and the crop water stress index (CWSI) in watermelon under water deficit stress. Plant and Soil, 513, 197-221.
  • Yavuz, N., Seymen, M., Yavuz, D., Kal, Ü., Kurtar, E. S., Kal, S., & Gür, A. (2025b). Functional roles of plant growth-promoting rhizobacteria in ungrafted and grafted watermelons under various deficit irrigation strategies. Agricultural Water Management, 318, 109687.
  • Zapata-García, S., Temnani, A., Berríos, P., Espinosa, P. J., Monllor, C., & Pérez-Pastor, A. (2025). Deficit irrigation and biostimulation preconditioning to improve drought resistance in melon. Agricultural Water Management, 309, 109311.

Does Water Stress after Fruit Development in Melon Affect Fruit Quality and Nutrient Uptake?

Yıl 2025, Cilt: 14 Sayı: 2, 144 - 155, 29.12.2025
https://doi.org/10.29278/azd.1816514

Öz

Objectives: In order to save irrigation water in melon cultivation, water stress was applied at different rates from fruit growth to harvest.
Materials and Methods: A total of six different experimental treatments were established including full irrigation applied throughout the season (control-I100) and five different water stress regimes (I80, I60, I40, I20, and I0) corresponding to 80 %, 60 %, 40 %, 20 %, and 0 % of water given to the S100 subject, respectively, during the fruit development stage until harvesting.
Results: As a result of the study, water stress caused significant changes in fruit quality as well as significant differences in nutrient element uptake. Water stress applied to melon caused a decrease in P and K uptake of approximately 25% and 20%, respectively. In addition, it provided an increase of 74%, 46%, 71% and 40% in Ca, Mg, Mn and B intakes, respectively, while it increased Fe intake by approximately 5.5 times. Increased water stress reduced the absorption of macronutrients from the soil, especially in melon, and also caused negative effects on fruit quality.
Conclusion: When the parameters examined in this study were evaluated together, no significant differences were found between I80 (20% water stress) application and I100 (full irrigation) subjects.

Etik Beyan

No potential conflict of interest was reported by the authors.

Destekleyen Kurum

SELCUK UNIVERSITY - Scientific Research Projects

Proje Numarası

S.Ü/BAP-22401056

Teşekkür

This manuscript contains certain data from the Master's thesis of Rufeyde Nur Özen. This work was supported by the Selcuk University under Project No. S.Ü/BAP-22401056.

Kaynakça

  • Ahanger, M. A., Morad‐Talab, N., Abd‐Allah, E. F., Ahmad, P., & Hajiboland, R. (2016). Plant growth under drought stress: Significance of mineral nutrients. Water Stress and Crop Plants: A Sustainable Approach, 2(1), 649–668.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome, 300(9), D05109.
  • Andersen, M. N., Jensen, C. R., & Lösch, R. (1992). The interaction effects of potassium and drought in field-grown barley. I. Yield, water-use efficiency and growth. Acta Agriculturae Scandinavica B-Plant Soil Sciences, 42(1), 34-44.
  • Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., & Boldt, J. K. (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants, 7(2), 28.
  • Cheraghi, M., Mousavi, S. M., & Zarebanadkouki, M. (2023). Functions of rhizosheath on facilitating the uptake of water and nutrients under drought stress: A review. Plant and Soil, 491(1), 239-263.
  • Dolu, H., Killi, D., Bas, S., Bilecen, D. S., & Seymen, M. (2025). Effectiveness of salt priming and plant growth-promoting bacteria in mitigating salt-induced photosynthetic damage in melon. Photosynthesis Research, 163(1), 1-17.
  • Ercan, M., Çoklar, H., Akbulut, M., Yavuz, D., Seymen, M., & Yavuz, N. (2023). Effect of irrigation regime on chemical, physico-chemical, and functional properties of melon fruits and seeds. Gesunde Pflanzen, 75(6), 2835-2845.
  • Fabeiro, C., de Santa Olalla, F. M., & De Juan, J. (2002). Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. Agric Water Manag, 54(2), 93–105.
  • Falah, M. A. F., Nadine, M. D., & Suryandono, A. (2015). Effects of storage conditions on quality and shelf-life of fresh-cut melon (Cucumis melo L.) and papaya (Carica papaya L.). Procedia Food Science, 3, 313-322.
  • FAO, (2024). Food and Agriculture Organization, Crop Production Statistics, http://www.fao.org/faostat /en/#data/QC. Access Date: November 10, 2024.
  • Hamdan, M. N., Razi, I. M., & Puteri Edaroyati, M. W. (2017). The effect of partial root drying and regulated deficit irrigation technique on growth of rock melon (Cucumis melo Linn cv. Glamour). J Trop Agric and Fd Sc, 45(1), 1 – 11.
  • Hartz, T. (1997). Effects of drip irrigation scheduling on muskmelon yield and quality. Sci Hortic, 69(1–2), 117–122. Itle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633-637.
  • Kyriacou, M. C., Leskovar, D. I., Colla, G., & Rouphael, Y. (2018). Watermelon and melon fruit quality: the genotypic and agro-environmental fac tors implicated. Sci Hortic, 234, 393–408.
  • Luo, L., Xia, H., & Lu, B. R. (2019). Editorial: Crop breeding for drought resistance. Front Plant Sci, 10, 314.
  • McGuire, G. R. (1992). Reporting of objective color measurements. Hortscience, 27(12), 1254-1255.
  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J of soil science and plant nutrition, 10(4), 470-481.
  • Mwadzingeni, L., Shimelis. H., Rees, D. J. G., & Tsilo,T. J. (2017). Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE, 12, e0171692.
  • Nayyar, H., & Kaushal, S. K. (2002). Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. Biol Plant, 45, 601-604.
  • Portela, S. I., & Cantwell, M. I. (1998). Quality changes of minimally processed honeydew melons stored in air or controlled atmosphere. Postharvest Biology and Technology, 14(3), 351-357.
  • Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International journal of molecular sciences, 20(13), 3137.
  • Sardans, J., Peñuelas, J., & Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39(2), 223-235.
  • Seymen, M. (2021). Comparative analysis of the relationship between morphological, physiological, and biochemical properties in spinach (Spinacea oleracea L.) under deficit irrigation conditions. Turkish J of Agric and Forestry, 45(1), 55-67.
  • Seymen, M., Yavuz, D., Ercan, M., Akbulut, M., Çoklar, H., Kurtar, E. S., Yavuz, N., Süheri, S., & Türkmen, Ö. (2021). Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit. Horticulture, Environment, and Biotechnology, 62(3), 411-422.
  • Seymen, M., Erçetin, M., Yavuz, D., Kıymacı, G., Kayak, N., Mutlu, A., & Kurtar, E. S. (2024). Agronomic and physio-biochemical responses to exogenous nitric oxide (NO) application in cauliflower under water stress conditions. Scientia Horticulturae, 331, 113116.
  • Silva, G. D., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Brandão, S. C. R., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. Lwt, 74, 114-119.
  • Skujins, S. (1998). Handbook for ICP-AES (Varıan-Vista)”. A hort guide to vista series ICP-AES Operation. Varian Int.AGs¸Zug. Version 1.0. pp 29, Switzerland.
  • Taheri, F., Maleki, A., & Fathi, A. (2021). Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of Quinoa grain yield. Crop Physiology Journal, 13(50), 135–49.
  • Verbruggen, N., & Hermans, C. (2013). Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and soil, 368, 87-99.
  • Yavuz, D., Gökmen Yılmaz, F., Seymen, M., Korkmaz, A., & Baştaş, K. K. (2024). Effects of newly isolated rhizobacteria on the physiological characteristics and nutrient uptake of watermelon plants grafted onto different rootstocks under water stress. Journal of Crop Health, 76(4), 865-881.
  • Yavuz, D., Seymen, M., Yavuz, N., Çoklar, H., & Ercan, M. (2021). Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agricultural Water Management, 246, 106673.
  • Yavuz, D., Seymen, M., Süheri, S., Yavuz, N., Türkmen, Ö., & Kurtar, E. S. (2020). How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation?. Agricultural Water Management, 241, 106351.
  • Yavuz, D., Seymen, M., Kal, Ü., Atakul, Z., Tanrıverdi, Ö. B., Türkmen, Ö., & Yavuz, N. (2023). Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes. Agricultural water management, 277, 108127.
  • Yavuz, N., Seymen, M., Kal, Ü., Yavuz, D., Kal, S., Kurtar, E. S., & Süheri, S. (2025a). Interactive effects of rootstock and rhizobacteria on fruit yield, evapotranspiration, and the crop water stress index (CWSI) in watermelon under water deficit stress. Plant and Soil, 513, 197-221.
  • Yavuz, N., Seymen, M., Yavuz, D., Kal, Ü., Kurtar, E. S., Kal, S., & Gür, A. (2025b). Functional roles of plant growth-promoting rhizobacteria in ungrafted and grafted watermelons under various deficit irrigation strategies. Agricultural Water Management, 318, 109687.
  • Zapata-García, S., Temnani, A., Berríos, P., Espinosa, P. J., Monllor, C., & Pérez-Pastor, A. (2025). Deficit irrigation and biostimulation preconditioning to improve drought resistance in melon. Agricultural Water Management, 309, 109311.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

Musa Seymen 0000-0002-2742-137X

Mustafa Paksoy 0000-0002-5120-4500

Duran Yavuz 0000-0001-9574-6929

Rufeyde Nur Özen 0009-0003-8538-5973

Deniz Metin 0000-0002-8917-6111

Proje Numarası S.Ü/BAP-22401056
Gönderilme Tarihi 3 Kasım 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Seymen, M., Paksoy, M., Yavuz, D., … Özen, R. N. (2025). Does Water Stress after Fruit Development in Melon Affect Fruit Quality and Nutrient Uptake? Akademik Ziraat Dergisi, 14(2), 144-155. https://doi.org/10.29278/azd.1816514