Araştırma Makalesi
BibTex RIS Kaynak Göster

Makarnalık (Triticum turgidum L. Durum) buğday Cd konsantrasyonu üzerine değişik (NaCl, KCl ve CaCl2) tuz uygulamalarının etkisi

Yıl 2020, Cilt: 9 Sayı: 1, 145 - 150, 30.06.2020
https://doi.org/10.29278/azd.719313

Öz

Bu araştırma, sera koşullarında, tesadüf parselleri deneme deseninde Cd ile kirlenmiş topraklara farklı (NaCl, KCl ve CaCl2) tuz uygulamalarının Cd alımı üzerine etkisi belirlemek amacıyla yapılmıştır. Kadmiyum’suz ve Cd’lu koşullarda Cl’un Na+, K+ ve Ca+2 formunda uygulanmasıyla bitki kuru madde verimi azalma eğilimi göstermiştir. Bu azalma, en belirgin olarak Cl’un 4.0 g kg-1 olarak verildiği NaCl ve KCl uygulamalarında görülmüştür. Buna göre, Cd’un en yüksek dozunda kontrol bitkisinde kuru madde verimi 649 mg bitki-1 iken, Cl’un 4.0 g kg-1 düzeyinde Na formunda uygulandığı koşulda, kuru madde verimi yaklaşık olarak 2.5 kat azalarak 276 mg bitki-1’ye, K formunda uygulanmasıyla ise yaklaşık olarak 2 kat azalarak 352 mg bitki-1 düzeyine inmiştir. Makarnalık buğday yeşil aksam Cd konsantrasyonunun artmasında Cl- tuzlarının önemli etkileri belirlenmiştir. Artan Cd dozlarında, Cl’un Na+, K+ ve Ca+2 formlarının uygulandığı tüm dozlarda yeşil aksam Cd konsantrasyonu artmıştır. Herhangi bir tuzun uygulanmadığı ve Cd’un 1 mg kg-1 düzeyinde uygulamasında, kontrol bitkisinin Cd konsantrasyonu 8.31 mg kg-1 olduğu buna karşın Cl’un 4.0 g kg-1 olarak verildiği Na+, K+ ve Ca+2 formlarında yeşil aksam Cd konsantrasyonu sırasıyla 26.4, 20.2 ve 13.5 mg kg-1’a yükselerek %217, %143 ve %62 oranında arttığı saptanmıştır. Sonuç olarak tuzların makarnalık buğdayda Cd alımını artırdığı ve bu artışta tuzlara eşlik eden katyonların önemli olduğu tespit edilmiştir. Farklı tuz Na+, K+ ve Ca+2 formları arasında da Cd konsantrasyonunu en fazla arttırmada Na+>K+>Ca+2 şeklinde bir sıralamanın olduğu belirlenmiştir.

Kaynakça

  • Bauddh, K., & Singh, R. P. (2012). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental safety, 85, 13-22.
  • Bouyoucos, G. J. (1952). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
  • Ciećko, Z., Kalembasa, S., Wyszkowski, M., & Rolka, E. (2004). Effect of soil contamination by cadmium on potassium uptake by plants. Polish Journal of Environmental Studies, 13(3), 333-337.
  • Çağlar, K., & Bilgisi, T. (1949). Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 10.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46.
  • Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. Journal of plant growth regulation, 31(3), 292-308.
  • Jackson, M. L,. 1959. Soil chemical analysis. Englewood Cliffs, New Jersey.
  • Korkmaz, K., Kara, S. M., Ozkutlu, F., & Gul, V. (2010). Monitoring of heavy metals and selected micronutrients in hempseeds from North-western Turkey. African Journal of Agricultural Research, 5(6), 463-467.
  • Korkmaz, K., Kara, S. M., Özkutlu, F., Akgün, M., & Cenkal, B. C. (2017). Profile of heavy metal and nutrient elements in some sideritis species. Indian Journal of Pharmaceutical Education and Research, 51(3), 209-212.
  • Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil science society of America journal, 42(3), 421-428.
  • McLaughlin, M. J., & Singh, B. R. (1999). Cadmium in soils and plants. In Cadmium in soils and plants (pp. 1-9). Springer, Dordrecht.
  • McLaughlin, M. J., Andrew, S. J., Smart, M. K., & Smolders, E. (1998b). Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant and Soil, 202(2), 211-216.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environmental Science and Pollution Research, 22(12), 9136-9147.
  • Mühling, K. H., & Läuchli, A. (2003). Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant and Soil, 253(1), 219-231.
  • Norvell, W. A., Wu, J., Hopkins, D. G., & Welch, R. M. (2000). Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Science Society of America Journal, 64(6), 2162-2168.
  • Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Özkutlu, F. & Kara, Ş. M. (2018). The effect of zinc (Zn) fertilization on alleviating cd accumulation in durum wheat grain. Journal of Agricultural Science and Technology B, 8 (2018): 203-208.
  • Özkutlu, F. & Kara, Ş. M. (2019). Cd concentration of durum wheat grain as influenced by soil salinity. Akademik Ziraat Dergisi, 8 (1): 97-100.
  • Rady, M. M., Mounzer, O., Alarcón, J., Abdelhamid, M., & Howladar, S. (2016). Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. Journal of Applied Botany and Food Quality, 89.
  • Raiesi, F., Razmkhah, M., & Kiani, S. (2018). Salinity stress accelerates the effect of cadmium toxicity on soil N dynamics and cycling: Does joint effect of these stresses matter?. Ecotoxicology and environmental safety, 153, 160-167.
  • Schlichting, E., & Blume, H. P. (1966). Bodenkundliches Praktikum: Verlag Paul Parey.
  • Sekeroglu, N., Ozkutlu, F., Kara, S. M., & Ozguven, M. (2008). Determination of cadmium and selected micronutrients in commonly used and traded medicinal plants in Turkey. Journal of the Science of Food and Agriculture, 88(1), 86-90.
  • Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M., & Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bulletin of environmental contamination and toxicology, 82(6), 772-776.
  • Shafi, M., Bakht, J., Razuddin, Hayat, Y., & Zhang, G. P. (2011). Genotypic difference in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses in wheat. Journal of plant nutrition, 34(3), 315-323.
  • Sruthi, P., Shackira, A. M., & Puthur, J. T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands ecology and management, 25(2), 129-148. Sun, H., Wang, X., Wang, Y., Wei, Y., & Wang, G. (2016). Alleviation of cadmium toxicity in cucumber (Cucumis sativus) seedlings by the application of selenium. Spanish journal of agricultural research, 14(4), 25.
  • U. S. Salinity Laboratory Staff., 1954. Diagnosis and improvement of saline and alkaline soils (Ed L. A. Richards). USDA Agriculture Handbook B, No: 60, U. S. Gov. Printing Office, Washington, 160P.
  • Zhao, Z. Q., Zhu, Y. G., Li, H. Y., Smith, S. E., & Smith, F. A. (2003). Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Environment international, 29(7), 973-978.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimi ve Ekolojisi
Bölüm Makaleler
Yazarlar

Faruk Özkutlu 0000-0002-8651-3346

Yayımlanma Tarihi 30 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 1

Kaynak Göster

APA Özkutlu, F. (2020). Makarnalık (Triticum turgidum L. Durum) buğday Cd konsantrasyonu üzerine değişik (NaCl, KCl ve CaCl2) tuz uygulamalarının etkisi. Akademik Ziraat Dergisi, 9(1), 145-150. https://doi.org/10.29278/azd.719313