Araştırma Makalesi
BibTex RIS Kaynak Göster

Samsun Tütünlerinin Genetik, Verim ve Kalite Varyasyonları Üretim Alanlarında Hala Devam Ediyor

Yıl 2023, Cilt: 12 Sayı: 2, 227 - 238, 31.12.2023
https://doi.org/10.29278/azd.1309976

Öz

Amaç: Samsun bölgesi kalite tipi tütünlerin üretimi yerel çeşit, hat ya da ekotiplerle yapılmaktadır. Bu genotipler verim ve kalite bakımından önemli varyasyonlar içermektedir. Bu araştırmanın amacı bölgedeki tütün üretiminde kullanılan genotiplerindeki varyasyonun belirlenmesidir.
Materyal ve Yöntem: Samsun bölgesi tütün üretim alanlarından toplanan 28 tütün hattındaki genetik varyasyon sekiz SSR markörü ile incelenmiştir. Bu hatlar ile Bafra ve Canik 190/5 standart çeşitlerinin 2018-2019 yıllarında tütün tarımının yaygın yapıldığı Samsun-Bafra’da tarla denemelerinde verim ve kalite performansları belirlenmiştir.
Bulgular: SSR markör verileri genetik olarak 19 farklı hattı ortaya çıkarmıştır. Hatların %67’sinin en az bir allel bakımından farklılık belirlenmesi Samsun tütünlerinde varyasyonların yüksek olduğunu göstermektedir. Hatların kuru yaprak verimleri 1266-2199 kg ha-1, randımanı %43-70, brüt geliri 3474-6802 $ ha-1 arasında değişiklik göstermiştir. Hatların nikotin oranının %0.76-1.16, indirgen şeker oranının %6.7-14.2 ve fenolik bileşiklerin 44.8-938.7 ppm arasında olduğu belirlenmiştir. Hatlardan S4, S5 ve S9’un Samsun bölgesinde yaygın kullanılan standart hatlardan daha yüksek yaprak verimine sahip olduğu tespit edilmiştir. Tüm karakterler bakımından verim ve kimyasal karakterler içerisinde indirgen şeker oranında geniş bir varyasyon saptanmıştır.
Sonuç: Kaliteli Samsun tütünlerinin sürdürülebilirliği için verimi ve iyi kalite göstergelerinden dolayı özellikle S4, S5 ve S14 hatları sonraki tarla denemeleri için seçilmiştir. Bu hatların üretimde kullanımı ile tütün ürünlerinin homojenliğini ve gelir artışın sağlanacağı öngörülmektedir.

Destekleyen Kurum

Öz-Ege Tütün San. Tic. A.Ş.

Kaynakça

  • Ahmed, S., Mohammad, F., Ahmed, Q., & Khan, M.A.U. (2014). Assessing genetic variation for morpho-agronomic traits of some native and exotic FCV tobacco genotypes in Pakistan. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 428-433.
  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., (1993). Optimizing parental selection for genetic linkage maps. Genome, 36, 181-186.
  • Aytac, B. (2016). Determination of Nail tobacco line performance in different locations in Bafra. [MSc Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Cai, K., Hua, D., Lei, B., Zhao, H., Pan, W., & Song, B. (2015). Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method. Analytica Chimica Acta. 882, 90-100.
  • Caliskan, O. (2006). Effects of different seedling production methods on yield and some quality components in tobacco (Nicotiana tabaccum L.), thyme (Origanum onites L.) and lemon balm (Melissa officinalis L.). [Phd Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Camas, N. (1998). The analysis of the inheritence ability of the some quantitative characters using line x tester method in tobacco. [Phd Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Camas, N., Caliskan, O., Odabas, M.S., & Ayan, A.K. (2009). The effects of organic originated fertilizer doses on yield and quality of Esendal tobacco cultivar. Proceeding of the Turkey VIII. Field Crops Congress. 251-255, Hatay, Turkey.
  • Chang, J., Luo, J., & He, G. (2009). Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway; Acta Biochimica et Biophysica Sinica. 123-130.
  • Clarke, M.B., Bezabeh, D.Z., & Howard, C.T. (2006). Determination of carbohydrates in tobacco products by liquid chromatography-mass spectrometry/mass spectrometry: A comparison with ion chromatography and application to product discrimination. Journal of Agricultural and Food Chemistry. 54, 1975-1981.
  • Dagnon, S., & Edreva, A. (2003). Applicaiton of pattern recognition method for color assessment of oriental tobacco based on HPLC of polyphenols; Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 20, 355-359.
  • Dagnon, S., Zaprianova, P., Edreva, A. (2006). Colour and aroma in virginia tobaccos as influenced by the polyphenol and essential oil cultivar characteristics: a chemometric approach. Biotechnology & Biotechnological Equipment. 20, 23-29.
  • Darvishzadeh, R., Mirzaei, L., Maleki, H.H., Laurentin, H., & Alavi, S.R. (2013). Genetic variation in oriental tobacco (Nicotiana tabacum L.) by agro-morphological traits and simple sequence repeat markers. Revista Ciencia Agronomica. 44, 347-355.
  • Davalieva, K., Maleva, I., Filiposki, K., Spiroski, O., & Efremov, G.D. (2010). Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity, 2, 439-449.
  • Docheva, M., Dagnon, S., Statkova, S., & Dimanov, D. (2012). Isolation of bioflavonoids from tobacco. Trakia Journal of Sciences. 10, 79-83.
  • Esendal, E., Ayan, A.K., Aytac, S., & Camas, N. (2001). Analysis of some characteristics of tobacco lines collected from Bafra population. Proceedings of the Turkey IV. Field Crops Congress. 267-272. Tekirdag, Turkey.
  • Esendal, E., Ayan, A.K., Aytac, S., Camas, N., & Caliskan, O. (2007). Analysis of properties of some tobacco lines from Bafra. Proceedings of the Turkey VII. Field Crops Congress. 414-420.Erzurum, Turkey. p.
  • Gay, G. (2020). A tough tobacco. The market for classical oriental tobacco faces many challenges-but this is a hardy business that has survived difficult times before. Tobacco Reporter https://tobaccoreporter.com/2020/01/17/a-tough-tobacco/ (accessed: July 21, 2020).
  • Kalayci, M. (2005). Using JMP with Examples and Analysis of Variance Models for Agricultural Research. Transitional Zone Agicultural Research Institute Publications, Turkey, p. 297.
  • Keskin, A., Koprulu, T.K., Bursali, A., Ozsemir, A.C., Yavuz, K.E., Tekin, S. (2014). First record of Ixodes arboricola (Ixodida: Ixodidae) from Turkey with presence of Candidatus Rickettsia vini (Rickettsiales: Rickettsiaceae). Journal of Medical Entomology, 51, 864-873.
  • Kınay, A. (2014). Yield and quality properties in some oriental tobacco (Nicotiana tabacum L.) hybrids. [Phd Thesis], Gaziosmanpasa University, Graduate School of Sciences, Tokat.
  • Kurt, D. (2021). Impacts of environmental variations on quality and chemical contents of oriental tobacco. Contributions to Tobacco and Nicotine Research. 30(1), 50–62.
  • Kurt, D. (2020). Stability analyses for interpreting genotype by environment interactıon of selected oriental tobacco landraces. Turkish Journal of Field Crops. 25(1), 83-91.
  • Kurt, D., & Kınay, A. (2021). Effects of irrigation, nitrogen forms and topping on sun cured tobacco. Industrial Crops & Products, 162, 113276.
  • Lambers, H., Chapin, S.F., & Pons, L.P. (2000). Plant physiological ecology. Springer-Verlag, New York. McGrath., T.E., Brown, A.P., Meruva, N.K., & Chan, W.G. (2009). Phenolic compound formation from the low temperature pyrolysis of tobacco. The Journal of Analytical and Applied Pyrolysis. 84, 170-178.
  • Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106, 283-292.
  • Nagai, A., Yamamoto, T., & Wariishi, H. (2012). Identification of Fructo- and Malto-Oligosaccharides in Cured Tobacco Leaves (Nicotiana tabacum L.). Journal of Agricultural and Food Chemistry. 60, 6606-6612.
  • Rodgman, A., & Perfetti, T.A. (2020). The chemical components of tobacco and tobacco smoke. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp. 1815.
  • Saygılı, I., Kınay, A., & Kandemir, N. (2020). Determination of an SSR marker set to distinguish genotypes of different tobacco classes. Journal of Agricultural Faculty of Gaziosmanpasa University. 37, 102-108.
  • Saygılı, I., Kınay, A., Kurt, D., & Kandemir, N. (2021). Genetic and agronomic diversity of Basma tobacco (Nicotiana tabacum L.) landrace in Turkey. Biotechnology, Agronomy and Society and Environment. (4), 279-290.
  • Saygılı, I., Kandemir, N., Kinay, A., Aytaç, S., & Ayan, A.K. (2022). SSR marker-based genetic characterization of Turkish oriental tobaccos. Molecular Biology Reports. 49, 11351–11358.
  • Senbayram, M., Ekren, S., & Sekin, S. (2006). Effects of ecological conditions and nutrients on oriental tobacco quality. Bulletin of the Tobacco Experts Association, 75, 13-17.
  • Usturali, A., Apti, R., Otan, R., Yazan, G., & Sengul, H. (1998). Selection studies on Sarıbağlar subpopulation in the Aegean tobacco region. Anadolu, Journal of Aegean Agricultural Research Institute. 8, 1-15.
  • Wang, H.Y., Zhao, M.M., Yang, B., Jiang, Y.M., & Rao, G.H. (2008). Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chemistry. 107, 1399-1406.
  • Xie, F., Yu, A., Hou, D., Liu, H., Ding, L., & Zhang, S. (2011). Rapid and sensitive analysis of eight polyphenols in tobacco by rapid resolution liquid chromatogarphy. American Journal of Analytical Chemistry. 2, 929-933.
  • Yazan, G., & Gencer, A.S. (2001). Determination of polyphenol compounds in Aegean region tobacco and investigation of their effects on smoke condensate. Presented at the IV. Turkey Field Crops Congress, 17–21. Tekirdag, Turkey.
  • Yeh, F.C., Yang, R.C., Boyle, T.B.J., Ye, Z.H., & Mao, J.X. (1997). POPGENE the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre. https://sites.ualberta.ca/~fyeh/popgene_download.html. (Accessed to 17 January 2023).
  • Zorba, T. (2008). A study on determination of tobacco cultivars and lines, best suited for Black Sea region and their expertise data. [MSc Thesis], University of Ondokuz Mayıs, Samsun, Turkey.

Genetic, Yield and Quality Variations of Samsun Tobacco Are Still Continuing In Production Areas

Yıl 2023, Cilt: 12 Sayı: 2, 227 - 238, 31.12.2023
https://doi.org/10.29278/azd.1309976

Öz

Objective: The production of quality type tobacco in the Samsun region is made with landrace, lines, or ecotypes. These genotypes contain significant variations in yield and quality. The aim of this research is to determine the variation in the landraces used in tobacco production in the region.
Materials and Methods: Twenty-eight lines were collected from tobacco production areas in Samsun region. Genetic variations were determined with eight SSR markers. The nineteen lines, standards Bafra and Canik 190/5 were evaluated in commonly tobacco production fields of Samsun-Bafra in 2018-2019.
Results: SSR marker data revealed 19 different lines. The difference in at least one allele of an SSR markers (67% of the lines) shows that the variation is relatively high in Samsun tobacco. Dry leaf yield of the lines varied between 1266-2199 kg ha-1, yield 43-70%, and gross income 3474-6802 $ ha-1. The nicotine ratio of the lines was between 0.76-1.16%, the reducing sugar ratio was between 6.7-14.2% and the phenolic compounds was between 44.8-938.7 ppm. Lines S4, S5 and S9 had higher Dry leaf yield than standard lines commonly used in Samsun region. There was wide variation in reducing sugar ratio in chemical characters and yield for all characters.
Conclusion: For the sustainability of quality Samsun tobacco, Lines S4, S5 and S14 were selected for the further field trials due to their yield and good quality. The use of these lines in production will increase the homogeneity of tobacco products and increase income.

Kaynakça

  • Ahmed, S., Mohammad, F., Ahmed, Q., & Khan, M.A.U. (2014). Assessing genetic variation for morpho-agronomic traits of some native and exotic FCV tobacco genotypes in Pakistan. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 428-433.
  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., (1993). Optimizing parental selection for genetic linkage maps. Genome, 36, 181-186.
  • Aytac, B. (2016). Determination of Nail tobacco line performance in different locations in Bafra. [MSc Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Cai, K., Hua, D., Lei, B., Zhao, H., Pan, W., & Song, B. (2015). Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method. Analytica Chimica Acta. 882, 90-100.
  • Caliskan, O. (2006). Effects of different seedling production methods on yield and some quality components in tobacco (Nicotiana tabaccum L.), thyme (Origanum onites L.) and lemon balm (Melissa officinalis L.). [Phd Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Camas, N. (1998). The analysis of the inheritence ability of the some quantitative characters using line x tester method in tobacco. [Phd Thesis]. University of Ondokuz Mayis, Samsun, Turkey.
  • Camas, N., Caliskan, O., Odabas, M.S., & Ayan, A.K. (2009). The effects of organic originated fertilizer doses on yield and quality of Esendal tobacco cultivar. Proceeding of the Turkey VIII. Field Crops Congress. 251-255, Hatay, Turkey.
  • Chang, J., Luo, J., & He, G. (2009). Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway; Acta Biochimica et Biophysica Sinica. 123-130.
  • Clarke, M.B., Bezabeh, D.Z., & Howard, C.T. (2006). Determination of carbohydrates in tobacco products by liquid chromatography-mass spectrometry/mass spectrometry: A comparison with ion chromatography and application to product discrimination. Journal of Agricultural and Food Chemistry. 54, 1975-1981.
  • Dagnon, S., & Edreva, A. (2003). Applicaiton of pattern recognition method for color assessment of oriental tobacco based on HPLC of polyphenols; Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 20, 355-359.
  • Dagnon, S., Zaprianova, P., Edreva, A. (2006). Colour and aroma in virginia tobaccos as influenced by the polyphenol and essential oil cultivar characteristics: a chemometric approach. Biotechnology & Biotechnological Equipment. 20, 23-29.
  • Darvishzadeh, R., Mirzaei, L., Maleki, H.H., Laurentin, H., & Alavi, S.R. (2013). Genetic variation in oriental tobacco (Nicotiana tabacum L.) by agro-morphological traits and simple sequence repeat markers. Revista Ciencia Agronomica. 44, 347-355.
  • Davalieva, K., Maleva, I., Filiposki, K., Spiroski, O., & Efremov, G.D. (2010). Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity, 2, 439-449.
  • Docheva, M., Dagnon, S., Statkova, S., & Dimanov, D. (2012). Isolation of bioflavonoids from tobacco. Trakia Journal of Sciences. 10, 79-83.
  • Esendal, E., Ayan, A.K., Aytac, S., & Camas, N. (2001). Analysis of some characteristics of tobacco lines collected from Bafra population. Proceedings of the Turkey IV. Field Crops Congress. 267-272. Tekirdag, Turkey.
  • Esendal, E., Ayan, A.K., Aytac, S., Camas, N., & Caliskan, O. (2007). Analysis of properties of some tobacco lines from Bafra. Proceedings of the Turkey VII. Field Crops Congress. 414-420.Erzurum, Turkey. p.
  • Gay, G. (2020). A tough tobacco. The market for classical oriental tobacco faces many challenges-but this is a hardy business that has survived difficult times before. Tobacco Reporter https://tobaccoreporter.com/2020/01/17/a-tough-tobacco/ (accessed: July 21, 2020).
  • Kalayci, M. (2005). Using JMP with Examples and Analysis of Variance Models for Agricultural Research. Transitional Zone Agicultural Research Institute Publications, Turkey, p. 297.
  • Keskin, A., Koprulu, T.K., Bursali, A., Ozsemir, A.C., Yavuz, K.E., Tekin, S. (2014). First record of Ixodes arboricola (Ixodida: Ixodidae) from Turkey with presence of Candidatus Rickettsia vini (Rickettsiales: Rickettsiaceae). Journal of Medical Entomology, 51, 864-873.
  • Kınay, A. (2014). Yield and quality properties in some oriental tobacco (Nicotiana tabacum L.) hybrids. [Phd Thesis], Gaziosmanpasa University, Graduate School of Sciences, Tokat.
  • Kurt, D. (2021). Impacts of environmental variations on quality and chemical contents of oriental tobacco. Contributions to Tobacco and Nicotine Research. 30(1), 50–62.
  • Kurt, D. (2020). Stability analyses for interpreting genotype by environment interactıon of selected oriental tobacco landraces. Turkish Journal of Field Crops. 25(1), 83-91.
  • Kurt, D., & Kınay, A. (2021). Effects of irrigation, nitrogen forms and topping on sun cured tobacco. Industrial Crops & Products, 162, 113276.
  • Lambers, H., Chapin, S.F., & Pons, L.P. (2000). Plant physiological ecology. Springer-Verlag, New York. McGrath., T.E., Brown, A.P., Meruva, N.K., & Chan, W.G. (2009). Phenolic compound formation from the low temperature pyrolysis of tobacco. The Journal of Analytical and Applied Pyrolysis. 84, 170-178.
  • Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106, 283-292.
  • Nagai, A., Yamamoto, T., & Wariishi, H. (2012). Identification of Fructo- and Malto-Oligosaccharides in Cured Tobacco Leaves (Nicotiana tabacum L.). Journal of Agricultural and Food Chemistry. 60, 6606-6612.
  • Rodgman, A., & Perfetti, T.A. (2020). The chemical components of tobacco and tobacco smoke. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp. 1815.
  • Saygılı, I., Kınay, A., & Kandemir, N. (2020). Determination of an SSR marker set to distinguish genotypes of different tobacco classes. Journal of Agricultural Faculty of Gaziosmanpasa University. 37, 102-108.
  • Saygılı, I., Kınay, A., Kurt, D., & Kandemir, N. (2021). Genetic and agronomic diversity of Basma tobacco (Nicotiana tabacum L.) landrace in Turkey. Biotechnology, Agronomy and Society and Environment. (4), 279-290.
  • Saygılı, I., Kandemir, N., Kinay, A., Aytaç, S., & Ayan, A.K. (2022). SSR marker-based genetic characterization of Turkish oriental tobaccos. Molecular Biology Reports. 49, 11351–11358.
  • Senbayram, M., Ekren, S., & Sekin, S. (2006). Effects of ecological conditions and nutrients on oriental tobacco quality. Bulletin of the Tobacco Experts Association, 75, 13-17.
  • Usturali, A., Apti, R., Otan, R., Yazan, G., & Sengul, H. (1998). Selection studies on Sarıbağlar subpopulation in the Aegean tobacco region. Anadolu, Journal of Aegean Agricultural Research Institute. 8, 1-15.
  • Wang, H.Y., Zhao, M.M., Yang, B., Jiang, Y.M., & Rao, G.H. (2008). Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chemistry. 107, 1399-1406.
  • Xie, F., Yu, A., Hou, D., Liu, H., Ding, L., & Zhang, S. (2011). Rapid and sensitive analysis of eight polyphenols in tobacco by rapid resolution liquid chromatogarphy. American Journal of Analytical Chemistry. 2, 929-933.
  • Yazan, G., & Gencer, A.S. (2001). Determination of polyphenol compounds in Aegean region tobacco and investigation of their effects on smoke condensate. Presented at the IV. Turkey Field Crops Congress, 17–21. Tekirdag, Turkey.
  • Yeh, F.C., Yang, R.C., Boyle, T.B.J., Ye, Z.H., & Mao, J.X. (1997). POPGENE the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre. https://sites.ualberta.ca/~fyeh/popgene_download.html. (Accessed to 17 January 2023).
  • Zorba, T. (2008). A study on determination of tobacco cultivars and lines, best suited for Black Sea region and their expertise data. [MSc Thesis], University of Ondokuz Mayıs, Samsun, Turkey.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarımda Bitki Islahı
Bölüm Makaleler
Yazarlar

Dursun Kurt 0000-0001-6697-3954

İbrahim Saygılı 0000-0003-0449-4872

Ahmet Kınay 0000-0003-4554-2148

Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kurt, D., Saygılı, İ., & Kınay, A. (2023). Samsun Tütünlerinin Genetik, Verim ve Kalite Varyasyonları Üretim Alanlarında Hala Devam Ediyor. Akademik Ziraat Dergisi, 12(2), 227-238. https://doi.org/10.29278/azd.1309976