Araştırma Makalesi
BibTex RIS Kaynak Göster

Relationships Between Selected Tomato Genotypes and Determination of Resistance Levels Against Some Pathogens

Yıl 2023, Cilt: 12 Sayı: 2, 177 - 186, 31.12.2023
https://doi.org/10.29278/azd.1356756

Öz

Objective:It has become imperative to develop hybrid varieties that carry disease and pest resistance alleles in order to improve the quality and quantity of agricultural production in an ecofriendly manner with reduced costs.The aim of the present work was to determine genetic relationships within a collection of tomato genotypes that have potential to be utilized as parents in breeding programs according to their agromorphological properties, as well as to reveal their resistance status for Meloidogyne incognita,Tomato Mosaic Virus, Verticillium wilt, Tomato Spotted Wilt Virus, Tomato Yellow Leaf CurlingVirus, Fusarium oxysporum f. sp.in the collection.
Material and Method: Molecular studies were carried out at the Molecular Biology and Genetics Laboratory of Necmettin Erbakan University, Faculty of Science.Field studies were carried out in the greenhouse facilities of the SELKO company located in Antalya.In the course of the work, molecular studies were carried out in order to determine the homogeneity levels of the genotypes, reveal the genetic relationships among the genotypes and determine their resistance against the aforementioned pathogens.
Result: As a result of the study, a total of 137 SSR alleles were obtained from 92 tomato genotypes. The mean PIC value of the SSR markers used in the study was 0.49. The marker with the highest PIC value was determined to be LE15 (0.496). Genetic diversity among tomato genotypes was determined using the unweighted Neigbor-joining (NJ) method and a dendrogram was created. As a result of the genetic diversity analysis, tomato genotypes were clustered into six groups (Group A-F). Accordingly,14 genotypes were clustered in group A, 13 in group B, 17 in group C, 17 in group D, 13 in group E and 17 in group F.
Conclusion: NJ dendrogram created as a result of the diversity analysis with ESTSSR allele data, it was determined that the genotypes were grouped into four main clusters that consisted ofsix groups. The mean dissimilarity value was determined as 0.38. There are several differentabiotic stress factors that affect tomato farming. In this context, the existence of genotypes with disease and pest resistance allelesis very important. As a result of the study, genotypes 1, 5,11, 26, 28, 40,53,63, 66, 70, 79, 87 and 88 were found to be resistant to all testedpathogens (Meloidogyne incognita, Tomato Mosaic Virus, Verticillium wilt, Tomato Spotted Wilt Virus, Tomato Yellow Leaf CurlingVirus Fusarium oxysporum f. sp.).

Kaynakça

  • Abhary, M., Patil, B. L., & Fauquet, C. M. (2007). Molecular biodiversity, taxonomy, and nomenclature of tomato yellow leaf curl-like viruses. In Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance (pp. 85-118): Springer.
  • Ali, F., Nadeem, M. A., Barut, M., Habyarimana, E., Chaudhary, H. J., Khalil, I. H., . . . Kurt, C. (2020). Genetic diversity, population structure and marker-trait association for 100-seed weight in international safflower panel using silicoDArT marker information. Plants, 9(5), 652.
  • Anupam, N. K. D., Kaur, S., & Buttar, H. (2020). Efficacy of non-chemical methods for management of root-knot nematode (Meloidogyne incognita) in tomato in protected cultivation. J Entomol Zool Stud, 8(3), 1383-1389.
  • Arens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., . . . Collonnier, C. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and applied genetics, 120, 655-664.
  • Ates, C., Fidan, H., Karacaoglu, M., & Dasgan, H. (2019). The identification of the resistance levels of Fusarium oxysporum f. sp. radicis-lycopersici and Tomato yellow leaf curl viruses in different tomato genotypes with traditional and molecular methods. Applied Ecology and Environmental Research, 17(2).
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm usingiPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491.
  • Basim, H., Kandİl, O., İğdİrlİ, R., & Mehmet, M. (2022). The Resistance of Some Tomato Lines against Tomato Spotted Wild Virus, Tomato Yellow Leaf Curl Virus and Root Knot Nematodes (meloidogyne spp.) by Molecular Markers. Black Sea Journal of Agriculture, 5(4), 401-405.
  • Cardoso, J., Tonelli, L., Kutz, T. S., Brandelero, F. D., Vargas, T. d. O., & Dallemole-Giaretta, R. (2019). Reaction of wild Solanaceae rootstocks to the parasitism of (Meloidogyne javanica). Horticultura Brasileira, 37, 17-21.
  • Cervantes-Moreno, R., Rodríguez-Pérez, J. E., Carrillo Fonseca, C., Sahagún-Castellanos, J., & Rodríguez-Guzmán, E. (2014). Tolerancia de 26 colectas de tomates nativos de México al nematodo Meloidogyne incognita (Kofoid y White) Chitwood. Revista Chapingo. Serie Horticultura, 20(1), 05-18.
  • Clement, C. R., de Cristo-Araújo, M., Coppens D’Eeckenbrugge, G., Alves Pereira, A., & Picanço-Rodrigues, D. (2010). Origin and domestication of native Amazonian crops. Diversity, 2(1), 72-106.
  • Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158.
  • Dianese, E. C., de Fonseca, M. E. N., Goldbach, R., Kormelink, R., Inoue-Nagata, A. K., Resende, R. O., & Boiteux, L. S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 25(1), 133-142.
  • Ding, Q., Li, J., Wang, F., Zhang, Y., Li, H., Zhang, J., & Gao, J. (2015). Characterization and development of EST-SSRs by deep transcriptome sequencing in Chinese cabbage (Brassica rapa L. ssp. pekinensis). International journal of genomics, 2015. Ekincialp, A., Erdinç, Ç., Turan, S., Cakmakci, O., Nadeem, M. A., Baloch, F. S., & Sensoy, S. (2019). Genetic characterization of Rheum ribes (wild rhubarb) genotypes in Lake Van basin of turkey through ISSR and SSR markers. International Journal of Agriculture and Biology, 21(4), 795-802.
  • Foolad, M. R., & Sharma, A. (2004). Molecular markers as selection tools in tomato breeding. Paper presented at the I International Symposium on Tomato Diseases 695.
  • Gill, U., Scott, J. W., Shekasteband, R., Ogundiwin, E., Schuit, C., Francis, D. M., . . . Hutton, S. F. (2019). Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theoretical and Applied Genetics, 132, 1543-1554.
  • Gonias, E. D., Ganopoulos, I., Mellidou, I., Bibi, A. C., Kalivas, A., Mylona, P. V., . . . Doulis, A. G. (2019). Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genetic Resources and Crop Evolution, 66(6), 1295-1309.
  • He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and applied genetics, 106, 363-373.
  • Ji, Y., Salus, M., Van Betteray, B., Smeets, J., Jensen, K., Martin, C., . . . Maxwell, D. (2008). Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci from Solanum chilense at 25 cM of chromosome 6 of tomato. Tomato Genet Cooper, 57, 25-29.
  • Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20, 271-284.
  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., . . . Wesemael, W. M. (2013). Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961.
  • Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H.-J., & Yeam, I. (2015). Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica, 205(2), 599-613.
  • Karık, Ü., Nadeem, M. A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., . . . Baloch, F. S. (2019). Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy, 9(10), 647.
  • Kaşvalvı, G. (2007). Effects of soil solarization and organic amendment treatments for controlling Meloidogyne incognita in tomato cultivars in Western Anatolia. Turkish Journal of Agriculture and Forestry, 31(3), 159-167.
  • Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., Van Rooijen, G., Waterer, D. R., . . . Howard, R. J. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences, 98(11), 6511-6515.
  • Korir, N., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., . . . Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet. Mol. Res, 13(1), 43-53.
  • Lázaro, A. (2018). Tomato landraces: an analysis of diversity and preferences. Plant Genetic Resources, 16(4), 315-324.
  • Lee, J. M., Oh, C.-S., & Yeam, I. (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs.
  • Liedl, B. E., Labate, J. A., Stommel, J. R., Slade, A., & Kole, C. (2013). Genetics, genomics, and breeding of tomato: CRC Press.
  • Mahmoud, A. M. (2015). Genetic analysis to select good combiners for TYLCV-tolerance and yield components in tomato. Annals of Agri. Sci., Moshtohor, 53(2), 221-232.
  • Manish, K., Yadav, R., Behera, T., Akshay, T., & Ajay, A. (2018). Genetic diversity analysis in tomato (Solanum lycopersicum) using microsatellite markers. Indian Journal of Agricultural Sciences, 88(1), 74-78.
  • Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., . . . Tiranti, B. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669.
  • Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., & Williamson, V. M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10(8), 1307-1319.
  • Mohan, V., Gupta, S., Thomas, S., Mickey, H., Charakana, C., Chauhan, V. S., . . . Sarma, S. (2016). Tomato fruits show wide phenomic diversity but fruit developmental genes show low genomic diversity. PloS one, 11(4), e0152907.
  • Panthee, D. R., Brown, A. F., Yousef, G. G., Ibrahem, R., & Anderson, C. (2013). Novel molecular marker associated with T m2a gene conferring resistance to tomato mosaic virus in tomato. Plant Breeding, 132(4), 413-416.
  • Perrier, X. (2006). DARwin software. http://darwin.cirad.fr/darwin
  • Pidigam, S., Thuraga, V., Munnam, S. B., Amarapalli, G., Kuraba, G., Pandravada, S. R., . . . Sudini, H. K. (2021). Genetic diversity, population structure and validation of SSR markers linked to Sw-5 and I-2 genes in tomato germplasm. Physiology and Molecular Biology of Plants, 27, 1695-1710.
  • Pinar, H., Uzun, A., Unlu, M., & Yaman, M. (2019). Genetic diversity in turkish banana (Musa cavendishii) genotypes with DAMD markers. Fresenius Environmental Bulletin, 28(1), 459-463.
  • Popescu, C. F., Bădulescu, A., Manolescu, A. E., Dumitru, A. M., & Sumedrea, D. I. (2022). Morphological Characterization And Genetic Variability Assessment With Ssr Markers In Several Tomato Genotypes. Scientific Papers. Series B. Horticulture, 66(1).
  • Rick, C. (1976). Tomato Lycopersicon esculentum (Solanaceae). Evolution of Crop Plants. NW Simmonds ed. In (pp. 268-273). London: Longman.
  • Roberts, P., McGovern, R., & Datnoff, L. (2000). Fusarium crown and root rot of tomato in Florida. Plant Pathology Fact Sheet, 184, 1-4.
  • Saidi, M., & Warade, S. D. (2008). Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): an overview of conventional and molecular approaches. Czech Journal of Genetics and Plant Breeding, 44(3), 83-92.
  • Shirasawa, K., Asamizu, E., Fukuoka, H., Ohyama, A., Sato, S., Nakamura, Y., . . . Kishida, Y. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theoretical and Applied Genetics, 121(4), 731-739.
  • Song, Y., Zhang, Z., Seidl, M. F., Majer, A., Jakse, J., Javornik, B., & Thomma, B. P. (2017). Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. Molecular plant pathology, 18(2), 195-209.
  • Staniaszek, M., Kozik, E., & Marczewski, W. (2007). A CAPS marker TAO1902 diagnostic for the I‐2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding, 126(3), 331-333.
  • Stevens, M., Scott, S., & Gergerich, R. (1991). Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica, 59(1), 9-17.
  • Tiwari, J. K., Yerasu, S. R., Rai, N., Singh, D. P., Singh, A. K., Karkute, S. G., . . . Behera, T. K. (2022). Progress in marker-assisted selection to genomics-assisted breeding in tomato. Critical Reviews in Plant Sciences, 41(5), 321-350.
  • Uzun, A., Yaman, M., Pinar, H., Gok, B. D., & Gazel, I. (2021). Leaf and fruit characteristics and genetic diversity of wild fruit cerasus prostratagenotypes collected from the Central Anatolia, Turkey. Acta Scientiarum Polonorum. Hortorum Cultus, 20(2).
  • Vargas, J. E. E., Aguirre, N. C., & Coronado, Y. M. (2020). Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers. Revista Ceres, 67, 199-206.
  • Villanueva-Gutierrez, E. E., Johansson, E., Prieto-Linde, M. L., Centellas Quezada, A., Olsson, M. E., & Geleta, M. (2022). Simple Sequence Repeat Markers Reveal Genetic Diversity and Population Structure of Bolivian Wild and Cultivated Tomatoes (Solanum lycopersicum L.). Genes, 13(9), 1505.
  • Williamson, V., Ho, J.-Y., Wu, F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 87(7), 757-763.
  • Yaman, M., & Uzun, A. (2021). Morphological and molecular identification of hybrid individuals obtained by interspecies hybridization (Prunus armeniaca× Prunus salicina). International Journal of Agricultural and Natural Sciences, 14(1), 7-15.
  • Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X., . . . Visser, R. G. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding, 34, 749-760.
  • Yildiz, E., Pinar, H., Uzun, A., Yaman, M., Sumbul, A., & Ercisli, S. (2021). Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data. Genetic Resources and Crop Evolution, 68, 1425-1437.
  • Zhou, R., Wu, Z., Cao, X., & Jiang, F. (2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genet. Mol. Res, 14(4), 13868-13879.

Seçilmiş Domatesler Arasında Genetik İlişkiler ve Bazı Patojenlere Karşı Dayanım Düzeylerinin Belirlenmesi

Yıl 2023, Cilt: 12 Sayı: 2, 177 - 186, 31.12.2023
https://doi.org/10.29278/azd.1356756

Öz

Amaç: Günümüzde, çevre dostu üretim tekniklerinin geliştirilmesi, verim ve kalitenin arttırılması ve yetiştiricilerin daha az maaliyetle üretim yapabilmeleri için hastalık ve zararlılara karşı direnç genlerini içeren hibrit çeşitler geliştirmek zorunluluk haline gelmiştir. Çalışma kapsamında agromorfolojik özellikleri bakımından ebeveyn olmaya uygun bir domates genotip koleksiyonu içinde genetik benzerlik ilişkilerinin ortaya konması ve bu genotiplerin Meloidogyne incognita, Tomato Mosaic Virus, Verticillium wilt, Tomato Spotted Wilt Virus, Tomato Yellow Leaf CurlingVirus Fusarium oxysporum f. sp. lycopersici patojenlerine karşı dayanıklılık seviyelerinin belirlenmesi amaçlanmıştır.
Materyal ve Yöntem: Çalışmada, genotipler arası akrabalık ilişkilerin belirlenmesi ve adı geçen patojenlere karşı dayanımlarının belirlenmesi amaçlanmıştır. Çalışmanın arazi aşaması Antalya'da bulunan SELKO şirketine ait olan AR-Ge serasında, moleküler çalışmalar ise Necmettin Erbakan Üniversitesi Fen Fakültesi Moleküler Biyoloji ve Genetik Laboratuvarında yürütülmüştür.
Araştırma Bulguları: Çalışmamızda 92 adet domates genotipinde toplam 137 adet SSR alleli elde edilmiştir. Çalışmada kullanılan SSR markörlerinin ortalama PIC değeri 0.49’dur. En yüksek PIC değeri olan markörün 0.496 değeri ile LE15 olduğu belirlenmiştir. Domates genotipleri arasındaki genetik çeşitlilik unweighted Neigbor-joining (NJ) yöntemi kullanılarak belirlenmiş ve dendrogramı oluşturulmuştur. Genetik çeşitlilik analizi sonucu çalışmaya dahil genotiplerin altı gruba ayrıldığı belirlenmiştir. Genotiplerin gruplara sayıca dağılımı A grubunda 14, B grubunda 13, C grubunda 17, D grubunda 17, E grubunda 13, F grubunda ise 17 genotip şeklinde gerçekleşmiştir.
Uzaklık matrisi ve oluşturulan dendrogramı arasında, yüksek düzeyde korelasyon görülmektedir (r = 0.91). Ortalama benzemezlik değeri, 0,38 olarak belirlenmiştir.
Sonuç: ESTSSR allel verileri ile gerçekleştirilen çeşitlilik analizi sonucunda oluşturulan NJ dendrogramı, genotiplerinin dört ana küme oluşturduğu ve genotiplerin altı grupta toplandığı belirlenmiştir. Ortalama benzemezlik değeri 0,38 olarak belirlenmiştir. Domates tarımında verimliliği olumsuz yönde etkileyen birçok abiyotik stres faktörü mevcuttur. Verimlilik için hastalık ve zararlılara karşı dayanıklılık alellerinesahip genotiplerin varlığı oldukça önemlidir. Çalışma sonucunda Meloidogyne incognita, Tomato Mosaic Virus, Verticillium wilt, Tomato Spotted Wilt Virus, Tomato Yellow Leaf Curling Virus, Fusarium oxysporum f. sp. patojenlerin tümüne birden 1,5,11, 26, 28, 40,53, 63, 66, 70, 79, 87 ve 88 nolu genotipler dayanıklı bulunmuştur.

Destekleyen Kurum

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (SU-BAP) (Proje No: 19201088) tarafından desteklenmiştir.

Kaynakça

  • Abhary, M., Patil, B. L., & Fauquet, C. M. (2007). Molecular biodiversity, taxonomy, and nomenclature of tomato yellow leaf curl-like viruses. In Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance (pp. 85-118): Springer.
  • Ali, F., Nadeem, M. A., Barut, M., Habyarimana, E., Chaudhary, H. J., Khalil, I. H., . . . Kurt, C. (2020). Genetic diversity, population structure and marker-trait association for 100-seed weight in international safflower panel using silicoDArT marker information. Plants, 9(5), 652.
  • Anupam, N. K. D., Kaur, S., & Buttar, H. (2020). Efficacy of non-chemical methods for management of root-knot nematode (Meloidogyne incognita) in tomato in protected cultivation. J Entomol Zool Stud, 8(3), 1383-1389.
  • Arens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., . . . Collonnier, C. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and applied genetics, 120, 655-664.
  • Ates, C., Fidan, H., Karacaoglu, M., & Dasgan, H. (2019). The identification of the resistance levels of Fusarium oxysporum f. sp. radicis-lycopersici and Tomato yellow leaf curl viruses in different tomato genotypes with traditional and molecular methods. Applied Ecology and Environmental Research, 17(2).
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm usingiPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491.
  • Basim, H., Kandİl, O., İğdİrlİ, R., & Mehmet, M. (2022). The Resistance of Some Tomato Lines against Tomato Spotted Wild Virus, Tomato Yellow Leaf Curl Virus and Root Knot Nematodes (meloidogyne spp.) by Molecular Markers. Black Sea Journal of Agriculture, 5(4), 401-405.
  • Cardoso, J., Tonelli, L., Kutz, T. S., Brandelero, F. D., Vargas, T. d. O., & Dallemole-Giaretta, R. (2019). Reaction of wild Solanaceae rootstocks to the parasitism of (Meloidogyne javanica). Horticultura Brasileira, 37, 17-21.
  • Cervantes-Moreno, R., Rodríguez-Pérez, J. E., Carrillo Fonseca, C., Sahagún-Castellanos, J., & Rodríguez-Guzmán, E. (2014). Tolerancia de 26 colectas de tomates nativos de México al nematodo Meloidogyne incognita (Kofoid y White) Chitwood. Revista Chapingo. Serie Horticultura, 20(1), 05-18.
  • Clement, C. R., de Cristo-Araújo, M., Coppens D’Eeckenbrugge, G., Alves Pereira, A., & Picanço-Rodrigues, D. (2010). Origin and domestication of native Amazonian crops. Diversity, 2(1), 72-106.
  • Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158.
  • Dianese, E. C., de Fonseca, M. E. N., Goldbach, R., Kormelink, R., Inoue-Nagata, A. K., Resende, R. O., & Boiteux, L. S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 25(1), 133-142.
  • Ding, Q., Li, J., Wang, F., Zhang, Y., Li, H., Zhang, J., & Gao, J. (2015). Characterization and development of EST-SSRs by deep transcriptome sequencing in Chinese cabbage (Brassica rapa L. ssp. pekinensis). International journal of genomics, 2015. Ekincialp, A., Erdinç, Ç., Turan, S., Cakmakci, O., Nadeem, M. A., Baloch, F. S., & Sensoy, S. (2019). Genetic characterization of Rheum ribes (wild rhubarb) genotypes in Lake Van basin of turkey through ISSR and SSR markers. International Journal of Agriculture and Biology, 21(4), 795-802.
  • Foolad, M. R., & Sharma, A. (2004). Molecular markers as selection tools in tomato breeding. Paper presented at the I International Symposium on Tomato Diseases 695.
  • Gill, U., Scott, J. W., Shekasteband, R., Ogundiwin, E., Schuit, C., Francis, D. M., . . . Hutton, S. F. (2019). Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theoretical and Applied Genetics, 132, 1543-1554.
  • Gonias, E. D., Ganopoulos, I., Mellidou, I., Bibi, A. C., Kalivas, A., Mylona, P. V., . . . Doulis, A. G. (2019). Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genetic Resources and Crop Evolution, 66(6), 1295-1309.
  • He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theoretical and applied genetics, 106, 363-373.
  • Ji, Y., Salus, M., Van Betteray, B., Smeets, J., Jensen, K., Martin, C., . . . Maxwell, D. (2008). Co-dominant SCAR markers for detection of the Ty-3 and Ty-3a loci from Solanum chilense at 25 cM of chromosome 6 of tomato. Tomato Genet Cooper, 57, 25-29.
  • Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding, 20, 271-284.
  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., . . . Wesemael, W. M. (2013). Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961.
  • Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H.-J., & Yeam, I. (2015). Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica, 205(2), 599-613.
  • Karık, Ü., Nadeem, M. A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., . . . Baloch, F. S. (2019). Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy, 9(10), 647.
  • Kaşvalvı, G. (2007). Effects of soil solarization and organic amendment treatments for controlling Meloidogyne incognita in tomato cultivars in Western Anatolia. Turkish Journal of Agriculture and Forestry, 31(3), 159-167.
  • Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., Van Rooijen, G., Waterer, D. R., . . . Howard, R. J. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences, 98(11), 6511-6515.
  • Korir, N., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., . . . Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet. Mol. Res, 13(1), 43-53.
  • Lázaro, A. (2018). Tomato landraces: an analysis of diversity and preferences. Plant Genetic Resources, 16(4), 315-324.
  • Lee, J. M., Oh, C.-S., & Yeam, I. (2015). Molecular markers for selecting diverse disease resistances in tomato breeding programs.
  • Liedl, B. E., Labate, J. A., Stommel, J. R., Slade, A., & Kole, C. (2013). Genetics, genomics, and breeding of tomato: CRC Press.
  • Mahmoud, A. M. (2015). Genetic analysis to select good combiners for TYLCV-tolerance and yield components in tomato. Annals of Agri. Sci., Moshtohor, 53(2), 221-232.
  • Manish, K., Yadav, R., Behera, T., Akshay, T., & Ajay, A. (2018). Genetic diversity analysis in tomato (Solanum lycopersicum) using microsatellite markers. Indian Journal of Agricultural Sciences, 88(1), 74-78.
  • Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., . . . Tiranti, B. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669.
  • Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., & Williamson, V. M. (1998). The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10(8), 1307-1319.
  • Mohan, V., Gupta, S., Thomas, S., Mickey, H., Charakana, C., Chauhan, V. S., . . . Sarma, S. (2016). Tomato fruits show wide phenomic diversity but fruit developmental genes show low genomic diversity. PloS one, 11(4), e0152907.
  • Panthee, D. R., Brown, A. F., Yousef, G. G., Ibrahem, R., & Anderson, C. (2013). Novel molecular marker associated with T m2a gene conferring resistance to tomato mosaic virus in tomato. Plant Breeding, 132(4), 413-416.
  • Perrier, X. (2006). DARwin software. http://darwin.cirad.fr/darwin
  • Pidigam, S., Thuraga, V., Munnam, S. B., Amarapalli, G., Kuraba, G., Pandravada, S. R., . . . Sudini, H. K. (2021). Genetic diversity, population structure and validation of SSR markers linked to Sw-5 and I-2 genes in tomato germplasm. Physiology and Molecular Biology of Plants, 27, 1695-1710.
  • Pinar, H., Uzun, A., Unlu, M., & Yaman, M. (2019). Genetic diversity in turkish banana (Musa cavendishii) genotypes with DAMD markers. Fresenius Environmental Bulletin, 28(1), 459-463.
  • Popescu, C. F., Bădulescu, A., Manolescu, A. E., Dumitru, A. M., & Sumedrea, D. I. (2022). Morphological Characterization And Genetic Variability Assessment With Ssr Markers In Several Tomato Genotypes. Scientific Papers. Series B. Horticulture, 66(1).
  • Rick, C. (1976). Tomato Lycopersicon esculentum (Solanaceae). Evolution of Crop Plants. NW Simmonds ed. In (pp. 268-273). London: Longman.
  • Roberts, P., McGovern, R., & Datnoff, L. (2000). Fusarium crown and root rot of tomato in Florida. Plant Pathology Fact Sheet, 184, 1-4.
  • Saidi, M., & Warade, S. D. (2008). Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): an overview of conventional and molecular approaches. Czech Journal of Genetics and Plant Breeding, 44(3), 83-92.
  • Shirasawa, K., Asamizu, E., Fukuoka, H., Ohyama, A., Sato, S., Nakamura, Y., . . . Kishida, Y. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theoretical and Applied Genetics, 121(4), 731-739.
  • Song, Y., Zhang, Z., Seidl, M. F., Majer, A., Jakse, J., Javornik, B., & Thomma, B. P. (2017). Broad taxonomic characterization of Verticillium wilt resistance genes reveals an ancient origin of the tomato Ve1 immune receptor. Molecular plant pathology, 18(2), 195-209.
  • Staniaszek, M., Kozik, E., & Marczewski, W. (2007). A CAPS marker TAO1902 diagnostic for the I‐2 gene conferring resistance to Fusarium oxysporum f. sp. lycopersici race 2 in tomato. Plant Breeding, 126(3), 331-333.
  • Stevens, M., Scott, S., & Gergerich, R. (1991). Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica, 59(1), 9-17.
  • Tiwari, J. K., Yerasu, S. R., Rai, N., Singh, D. P., Singh, A. K., Karkute, S. G., . . . Behera, T. K. (2022). Progress in marker-assisted selection to genomics-assisted breeding in tomato. Critical Reviews in Plant Sciences, 41(5), 321-350.
  • Uzun, A., Yaman, M., Pinar, H., Gok, B. D., & Gazel, I. (2021). Leaf and fruit characteristics and genetic diversity of wild fruit cerasus prostratagenotypes collected from the Central Anatolia, Turkey. Acta Scientiarum Polonorum. Hortorum Cultus, 20(2).
  • Vargas, J. E. E., Aguirre, N. C., & Coronado, Y. M. (2020). Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers. Revista Ceres, 67, 199-206.
  • Villanueva-Gutierrez, E. E., Johansson, E., Prieto-Linde, M. L., Centellas Quezada, A., Olsson, M. E., & Geleta, M. (2022). Simple Sequence Repeat Markers Reveal Genetic Diversity and Population Structure of Bolivian Wild and Cultivated Tomatoes (Solanum lycopersicum L.). Genes, 13(9), 1505.
  • Williamson, V., Ho, J.-Y., Wu, F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 87(7), 757-763.
  • Yaman, M., & Uzun, A. (2021). Morphological and molecular identification of hybrid individuals obtained by interspecies hybridization (Prunus armeniaca× Prunus salicina). International Journal of Agricultural and Natural Sciences, 14(1), 7-15.
  • Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X., . . . Visser, R. G. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding, 34, 749-760.
  • Yildiz, E., Pinar, H., Uzun, A., Yaman, M., Sumbul, A., & Ercisli, S. (2021). Identification of genetic diversity among Juglans regia L. genotypes using molecular, morphological, and fatty acid data. Genetic Resources and Crop Evolution, 68, 1425-1437.
  • Zhou, R., Wu, Z., Cao, X., & Jiang, F. (2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genet. Mol. Res, 14(4), 13868-13879.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Gülbanu Kıymacı 0000-0002-7693-7663

Ayşe Özgür Uncu 0000-0001-6435-579X

Önder Türkmen 0000-0003-3218-6551

Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kıymacı, G., Uncu, A. Ö., & Türkmen, Ö. (2023). Seçilmiş Domatesler Arasında Genetik İlişkiler ve Bazı Patojenlere Karşı Dayanım Düzeylerinin Belirlenmesi. Akademik Ziraat Dergisi, 12(2), 177-186. https://doi.org/10.29278/azd.1356756