Araştırma Makalesi
BibTex RIS Kaynak Göster

Polygonum cognatum Meissn Aracılı AgNP Sentezini Optimize Etmek İçin Plackett‒Burman ve Box‒Behnken Tasarımları: Çeşitli Phytophthora spp.'ye Karşı Antifungal Aktivite

Yıl 2024, Cilt: 13 Sayı: 2, 272 - 286, 31.12.2024
https://doi.org/10.29278/azd.1522321

Öz

Amaç: Bu çalışma, Polygonum cognatum (Madımak) ekstraktı kullanılarak gümüş nanopartiküllerin (AgNP'ler) çevre dostu bir sentez yönteminin geliştirilmesini ve istatistiksel deney tasarımı kullanılarak üretimlerinin optimize edilmesini amaçlamıştır. Sentezlenen AgNP'ler karakterize edilmiş ve Phytophthora türlerine karşı antifungal aktiviteleri değerlendirilmiştir.
Materyal ve Yöntem: Madımak ekstraktı, AgNP'lerin sentezi için biyo-indirgeyici bir ajan olarak görev yapmıştır. Ekstraktın toplam ve bireysel fenolik bileşik içeriği UV‒Vis spektroskopisi ve UHPLC analizleri ile karakterize edilmiştir. AgNP veriminin optimizasyonu, Plackett‒Burman ve Box‒Behnken tasarımları kullanılarak gerçekleştirilmiştir. Sentezlenen AgNP'lerin karakterizasyonu UV‒Vis spektroskopisi, FT‒IR, SEM‒EDS ve TEM kullanılarak yapılmıştır. AgNP'lerin altı Phytophthora türüne karşı antifungal aktivitesi in vitro testler yoluyla belirlenmiştir.
Araştırma Bulguları: RSM optimizasyonunun sonuçları, 5 g bitki materyali miktarı, 80°C kaynatma sıcaklığı, 20 dakikalık kaynatma süresi, 10 mM AgNO3 konsantrasyonu, 2.5 ml ekstrakt hacmi, 600 watt mikrodalga gücü ve 90 saniye reaksiyon süresi ile optimize edilmiş koşullar altında yüksek AgNP verimi ortaya koymuştur. Karakterizasyon, ortalama boyutu 10.07 nm olan küresel AgNP'lerin oluşumunu doğrulamıştır. FT‒IR analizi, kafeik asidin AgNP sentezindeki rolünü göstermiştir. AgNP'ler, tüm test edilen Phytophthora türlerine karşı EC50, MIC ve MFC değerleri sırasıyla 47.44 ila 118.80 µg ml-1, 400 ila 600 µg ml-1 ve 400 ila 800 µg ml-1 arasında değişen antifungal aktivite sergilemiştir.
Sonuç: Bu çalışmada, Madımak ekstraktı kullanılarak AgNP'ler başarılı bir şekilde sentezlenmiş ve süreç optimize edilmiştir. Sentezlenen AgNP'ler Phytophthora türlerine karşı güçlü antifungal aktivite göstererek Phytophthora hastalıklarının yönetiminde sürdürülebilir bir alternatif olarak potansiyellerini ortaya koymuştur.

Destekleyen Kurum

Ordu Üniversitesi

Proje Numarası

B-2217

Kaynakça

  • Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M., & Ali, G. S. (2015). Inhibition of P.a parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183-1190.
  • Ates, U., & Ozturk, B. (2023). Evaluating the bioactive profile of sweet cherry (Prunus avium L.) cultivars: Insights into phenolic content, antioxidant activity, and individual phenolic. Erwerbs-Obstbau, 65(6), 2299-2304.
  • Bayram, M., & Topuz, S. (2023). Optimization of phenolic compound extraction using response surface method from Madimak. Gıda, 48(1), 118-129.
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, Y., Piao, X., Gao, W., Zhang, Z., Nie, E., & Sun, Z. (2017). Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Advances, 7(54), 34041-34048.
  • Çevik, Ö., Şener, A., Kumral, Z. Ö., Çetinel, Ş., Altıntaş, A., Oba, R., ... & Yarat, A. (2014). Protective and therapeutic effects of P. cognatum aqueous extract in experimental colitis. Marmara Pharmaceutical Journal, 18(3), 126-134.
  • Chowdhury, S., Yusof, F., Faruck, M. O., & Sulaiman, N. (2016). Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Engineering, 148, 992-999.
  • Dereli, F. T. G., Ilhan, M., Kozan, E., & Akkol, E. K. (2019). Effective eradication of pinworms (Syphacia obvelata and Aspiculuris tetraptera) with Polygonum cognatum Meissn. Experimental parasitology, 196, 63-67.
  • Dhar, S. A., Chowdhury, R. A., Das, S., Nahian, M. K., Islam, D., & Gafur, M. A. (2021). Plant-mediated green synthesis and characterization of AgNPs using Phyllanthus emblica fruit extract. Materials Today: Proceedings, 42, 1867-1871.
  • Gevrek, C., Yiğit, U., & Türkkan, M. (2023). Optimization and antifungal activity of silver nanoparticles synthesized using the leaf extract of Corylus colurna L. (Turkish hazelnut). Akademik Ziraat Dergisi, 12(Özel Sayı), 159-172.
  • Guo, D., Dou, D., Ge, L., Huang, Z., Wang, L., & Gu, N. (2015). A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids and Surfaces B: Biointerfaces, 134, 229-234.
  • Gürsoy, N., Elagöz, S., & Gölge, E. (2020). Investigation of antimicrobial effects of silver nanoparticles (AgNPs) synthesized on Polygonum cognatum Meissn. and fungus environment. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 221-230.
  • Halima, R., Narula, A., & Sravanthi, V. (2021). Optimization of process parameters for the green synthesis of silver nanoparticles using Plackett‒Burman and 3-level Box–Behnken Design. Journal of Huazhong University of Science and Technology ISSN, 1671, 4512.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227.
  • Kale, R., Barwar, S., Kane, P., & More, S. (2018). Green synthesis of silver nanoparticles using papaya seed and its characterization. International Journal for Research in Applied Science & Engineering Technology, 6, 168-174.
  • Kaplan, Ö., & Tosun, N. G. (2023). Biosynthesis of iron, copper and silver nanoparticles using Polygonum cognatum and Tragopogon porrifolius extracts and evaluation of their antimicrobial potentials. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(4), 2155-2167.
  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677.
  • Khan, M., Khan, A. U., Alam, M. J., Park, S., & Alam, M. (2020). Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. International Journal of Environmental Analytical Chemistry, 100(12), 1390-1401.
  • Konwarh, R., Karak, N., Sawian, C. E., Baruah, S., & Mandal, M. (2011). Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface. Carbohydrate Polymers, 83(3), 1245-1252.
  • Kumar, K. M., Sinha, M., Mandal, B. K., Ghosh, A. R., Kumar, K. S., & Reddy, P. S. (2012). Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228-233.
  • Laime-Oviedo, L. A., Soncco-Ccahui, A. A., Peralta-Alarcon, G., Arenas-Chávez, C. A., Pineda-Tapia, J. L., Díaz-Rosado, J. C., ... & Vera-Gonzales, C. (2022). Optimization of synthesis of silver nanoparticles conjugated with Lepechinia meyenii (Salvia) using Plackett‒Burman Design and Response Surface Methodology—preliminary antibacterial activity. Processes, 10(9), 1727.
  • Laime-Oviedo, L. A., Arenas-Chávez, C. A., Yáñez, J. A., & Vera-Gonzáles, C. A. (2023). Plackett‒Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity. F1000Research, 12.
  • Le, N. T. T., Nguyen, D. H., Nguyen, N. H., Ching, Y. C., Pham Nguyen, D. Y., Ngo, C. Q., ... & Hoang Thi, T. T. (2020). Silver nanoparticles ecofriendly synthesized by Achyranthes aspera and Scoparia dulcis leaf broth as an effective fungicide. Applied Sciences, 10(7), 2505.
  • Magudapathy, P., Gangopadhyay, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter, 299(1-2), 142-146.
  • Maitra, B., Khatun, M. H., Ahmed, F., Ahmed, N., Kadri, H. J., Rasel, M. Z. U., ..& Rabbi, M. A. (2023). Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arabian Journal of Chemistry, 16(5), 104675.
  • Martínez-Bernett, D., Silva-Granados, A., Correa-Torres, S. N., & Herrera, A. (2016). Chromatographic analysis of phytochemicals components present in Mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction. In Journal of Physics: Conference Series (Vol. 687, No. 1, p. 012033). IOP Publishing.
  • Mickky, B., Elsaka, H., Abbas, M., Gebreil, A., & Eldeen, R. S. (2024). Plackett–Burman screening of physico-chemical variables affecting Citrus peel-mediated synthesis of silver nanoparticles and their antimicrobial activity. Scientific Reports, 14(1), 8079.
  • Nguyen, D. H., Lee, J. S., Park, K. D., Ching, Y. C., Nguyen, X. T., Phan, V. G., & Hoang Thi, T. T. (2020). Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials, 10(3), 542.
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10(1), 9642.
  • Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A., & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13(7), 8086-8096.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814.
  • Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial activity of polyphenols and alkaloids in Middle eastern plants. Front. Microbiology 10, 911.
  • Özturk, B., Yıldız, K., & Küçüker, E. (2015). Effect of pre‐harvest methyl jasmonate treatments on ethylene production, water‐soluble phenolic compounds and fruit quality of Japanese plums. Journal of the Science of Food and Agriculture, 95(3), 583-591.
  • Prakash, S. H., Rajeshkumar, S., Khan, M. A., Prabu, C. S., Khan, M. R., Arunkumar, E., & Mohana Roopan, S. (2024). Enhancing fruit preservation: Fungal growth inhibition with grape seed‐mediated Ag@AgCl nanoparticles through desirability‐based optimization. ChemistrySelect, 9(12), e202304485.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
  • Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A., ... & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517.
  • Sharma, N. K., Vishwakarma, J., Rai, S., Alomar, T. S., AlMasoud, N., & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004-27020.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Stepanov, A. L. (2004). Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Technical Physics, 49, 143-153.
  • Trivedi, P., Khandelwal, M., & Srivastava, P. (2014). Statistically optimized synthesis of silver nanocubes from peel extracts of Citrus limetta and potential application in waste water treatment. Journal of Mic. & Biochemical Technology, 4(004).
  • Vanaja, K., & Shobha Rani, R. H. (2007). Design of experiments: concept and applications of Plackett Burman design. Clinical Research and Regulatory Affairs, 24(1), 1-23.
  • Vijayaraghavan, K., Nalini, S. K., Prakash, N. U., & Madhankumar, D. J. M. L. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35.
  • Ye, M., Yang, W., Zhang, M., Huang, H., Huang, A., & Qiu, B. (2023). Biosynthesis, characterization, and antifungal activity of plant-mediated silver nanoparticles using Cnidium monnieri fruit extract. Frontiers in Microbiology, 14, 1291030.
  • Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., ... & Takaishi, Y. (1995). Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. Journal of Ethnopharmacology, 46(3), 133-152.
  • Yılmaz, M., Yılmaz, A., Karaman, A., Aysin, F., & Aksakal, O. (2021). Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta, 225, 121952.
  • Yıldırım, A., Mavi, A., & Kara, A. A. (2003). Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts. Journal of the Science of Food and Agriculture, 83(1), 64-69.
  • Yiğit, U., & Türkkan, M. (2023). Antifungal activity and optimization procedure of microwave-synthesized silver nanoparticles using linden (Tilia rubra subsp. caucasica) flower extract. International Journal of Chemistry and Technology, 7(1), 25-37.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.

Plackett‒Burman and Box‒Behnken Designs for Optimizing Polygonum cognatum Meissn-Mediated AgNP Synthesis: Antifungal Activity Against Diverse Phytophthora spp.

Yıl 2024, Cilt: 13 Sayı: 2, 272 - 286, 31.12.2024
https://doi.org/10.29278/azd.1522321

Öz

Objective: This study aimed to develop an eco-friendly method for synthesizing silver nanoparticles (AgNPs) using Polygonum cognatum (Madimak) extract and optimize their production using statistical design of experiments. The synthesized AgNPs were characterized, and their antifungal activity against Phytophthora species was evaluated.
Materyal ve Yöntem: Madimak extract served as a bio-reducing agent for the synthesis of AgNPs. The total and individual phenolic compound content of Madimak extract was characterized by UV‒Vis spectroscopy and UHPLC analyses. Optimization of AgNP yield was conducted through Plackett‒Burman and Box‒Behnken designs. Characterization of synthesized AgNPs was performed using UV‒Vis spectroscopy, FT‒IR, SEM‒EDS, and TEM. The antifungal activity of AgNPs against six Phytophthora species was determined through in vitro assays.
Results: The results of the RSM optimization revealed a high AgNP yield under the optimized conditions, with a plant material amount of 5 g, a boiling temperature of 80°C, a boiling time of 20 minutes, an AgNO3 concentration of 10 mM, an extract volume of 2.5 ml, a microwave power of 600 watts, and a reaction time of 90 seconds. Characterization confirmed the formation of spherical AgNPs with an average size of 10.07 nm. FT‒IR analysis indicated the role of caffeic acid in AgNP synthesis. AgNPs exhibited antifungal activity against all tested Phytophthora species with EC50, MIC, and MFC values ranging from 47.44 to 118.80 µg ml-1, 400 to 600 µg ml-1, and 400 to 800 µg ml-1, respectively.
Conclusion: AgNPs were successfully synthesized and the process optimized using Madimak extract in this study. The synthesized AgNPs revealed potent antifungal activity against Phytophthora species, indicating their potential as a sustainable alternative for managing Phytophthora diseases.

Proje Numarası

B-2217

Kaynakça

  • Ali, M., Kim, B., Belfield, K. D., Norman, D., Brennan, M., & Ali, G. S. (2015). Inhibition of P.a parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183-1190.
  • Ates, U., & Ozturk, B. (2023). Evaluating the bioactive profile of sweet cherry (Prunus avium L.) cultivars: Insights into phenolic content, antioxidant activity, and individual phenolic. Erwerbs-Obstbau, 65(6), 2299-2304.
  • Bayram, M., & Topuz, S. (2023). Optimization of phenolic compound extraction using response surface method from Madimak. Gıda, 48(1), 118-129.
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, Y., Piao, X., Gao, W., Zhang, Z., Nie, E., & Sun, Z. (2017). Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Advances, 7(54), 34041-34048.
  • Çevik, Ö., Şener, A., Kumral, Z. Ö., Çetinel, Ş., Altıntaş, A., Oba, R., ... & Yarat, A. (2014). Protective and therapeutic effects of P. cognatum aqueous extract in experimental colitis. Marmara Pharmaceutical Journal, 18(3), 126-134.
  • Chowdhury, S., Yusof, F., Faruck, M. O., & Sulaiman, N. (2016). Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Engineering, 148, 992-999.
  • Dereli, F. T. G., Ilhan, M., Kozan, E., & Akkol, E. K. (2019). Effective eradication of pinworms (Syphacia obvelata and Aspiculuris tetraptera) with Polygonum cognatum Meissn. Experimental parasitology, 196, 63-67.
  • Dhar, S. A., Chowdhury, R. A., Das, S., Nahian, M. K., Islam, D., & Gafur, M. A. (2021). Plant-mediated green synthesis and characterization of AgNPs using Phyllanthus emblica fruit extract. Materials Today: Proceedings, 42, 1867-1871.
  • Gevrek, C., Yiğit, U., & Türkkan, M. (2023). Optimization and antifungal activity of silver nanoparticles synthesized using the leaf extract of Corylus colurna L. (Turkish hazelnut). Akademik Ziraat Dergisi, 12(Özel Sayı), 159-172.
  • Guo, D., Dou, D., Ge, L., Huang, Z., Wang, L., & Gu, N. (2015). A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids and Surfaces B: Biointerfaces, 134, 229-234.
  • Gürsoy, N., Elagöz, S., & Gölge, E. (2020). Investigation of antimicrobial effects of silver nanoparticles (AgNPs) synthesized on Polygonum cognatum Meissn. and fungus environment. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 221-230.
  • Halima, R., Narula, A., & Sravanthi, V. (2021). Optimization of process parameters for the green synthesis of silver nanoparticles using Plackett‒Burman and 3-level Box–Behnken Design. Journal of Huazhong University of Science and Technology ISSN, 1671, 4512.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227.
  • Kale, R., Barwar, S., Kane, P., & More, S. (2018). Green synthesis of silver nanoparticles using papaya seed and its characterization. International Journal for Research in Applied Science & Engineering Technology, 6, 168-174.
  • Kaplan, Ö., & Tosun, N. G. (2023). Biosynthesis of iron, copper and silver nanoparticles using Polygonum cognatum and Tragopogon porrifolius extracts and evaluation of their antimicrobial potentials. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(4), 2155-2167.
  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668-677.
  • Khan, M., Khan, A. U., Alam, M. J., Park, S., & Alam, M. (2020). Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. International Journal of Environmental Analytical Chemistry, 100(12), 1390-1401.
  • Konwarh, R., Karak, N., Sawian, C. E., Baruah, S., & Mandal, M. (2011). Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface. Carbohydrate Polymers, 83(3), 1245-1252.
  • Kumar, K. M., Sinha, M., Mandal, B. K., Ghosh, A. R., Kumar, K. S., & Reddy, P. S. (2012). Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 228-233.
  • Laime-Oviedo, L. A., Soncco-Ccahui, A. A., Peralta-Alarcon, G., Arenas-Chávez, C. A., Pineda-Tapia, J. L., Díaz-Rosado, J. C., ... & Vera-Gonzales, C. (2022). Optimization of synthesis of silver nanoparticles conjugated with Lepechinia meyenii (Salvia) using Plackett‒Burman Design and Response Surface Methodology—preliminary antibacterial activity. Processes, 10(9), 1727.
  • Laime-Oviedo, L. A., Arenas-Chávez, C. A., Yáñez, J. A., & Vera-Gonzáles, C. A. (2023). Plackett‒Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity. F1000Research, 12.
  • Le, N. T. T., Nguyen, D. H., Nguyen, N. H., Ching, Y. C., Pham Nguyen, D. Y., Ngo, C. Q., ... & Hoang Thi, T. T. (2020). Silver nanoparticles ecofriendly synthesized by Achyranthes aspera and Scoparia dulcis leaf broth as an effective fungicide. Applied Sciences, 10(7), 2505.
  • Magudapathy, P., Gangopadhyay, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B: Condensed Matter, 299(1-2), 142-146.
  • Maitra, B., Khatun, M. H., Ahmed, F., Ahmed, N., Kadri, H. J., Rasel, M. Z. U., ..& Rabbi, M. A. (2023). Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arabian Journal of Chemistry, 16(5), 104675.
  • Martínez-Bernett, D., Silva-Granados, A., Correa-Torres, S. N., & Herrera, A. (2016). Chromatographic analysis of phytochemicals components present in Mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction. In Journal of Physics: Conference Series (Vol. 687, No. 1, p. 012033). IOP Publishing.
  • Mickky, B., Elsaka, H., Abbas, M., Gebreil, A., & Eldeen, R. S. (2024). Plackett–Burman screening of physico-chemical variables affecting Citrus peel-mediated synthesis of silver nanoparticles and their antimicrobial activity. Scientific Reports, 14(1), 8079.
  • Nguyen, D. H., Lee, J. S., Park, K. D., Ching, Y. C., Nguyen, X. T., Phan, V. G., & Hoang Thi, T. T. (2020). Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials, 10(3), 542.
  • Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Scientific Reports, 10(1), 9642.
  • Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A., & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13(7), 8086-8096.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814.
  • Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial activity of polyphenols and alkaloids in Middle eastern plants. Front. Microbiology 10, 911.
  • Özturk, B., Yıldız, K., & Küçüker, E. (2015). Effect of pre‐harvest methyl jasmonate treatments on ethylene production, water‐soluble phenolic compounds and fruit quality of Japanese plums. Journal of the Science of Food and Agriculture, 95(3), 583-591.
  • Prakash, S. H., Rajeshkumar, S., Khan, M. A., Prabu, C. S., Khan, M. R., Arunkumar, E., & Mohana Roopan, S. (2024). Enhancing fruit preservation: Fungal growth inhibition with grape seed‐mediated Ag@AgCl nanoparticles through desirability‐based optimization. ChemistrySelect, 9(12), e202304485.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
  • Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E. A., Ibrahim, N. A., Shabanzadeh, P., Rustaiyan, A., ... & Zidan, M. (2012). Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules, 17(7), 8506-8517.
  • Sharma, N. K., Vishwakarma, J., Rai, S., Alomar, T. S., AlMasoud, N., & Bhattarai, A. (2022). Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega, 7(31), 27004-27020.
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Stepanov, A. L. (2004). Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Technical Physics, 49, 143-153.
  • Trivedi, P., Khandelwal, M., & Srivastava, P. (2014). Statistically optimized synthesis of silver nanocubes from peel extracts of Citrus limetta and potential application in waste water treatment. Journal of Mic. & Biochemical Technology, 4(004).
  • Vanaja, K., & Shobha Rani, R. H. (2007). Design of experiments: concept and applications of Plackett Burman design. Clinical Research and Regulatory Affairs, 24(1), 1-23.
  • Vijayaraghavan, K., Nalini, S. K., Prakash, N. U., & Madhankumar, D. J. M. L. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75, 33-35.
  • Ye, M., Yang, W., Zhang, M., Huang, H., Huang, A., & Qiu, B. (2023). Biosynthesis, characterization, and antifungal activity of plant-mediated silver nanoparticles using Cnidium monnieri fruit extract. Frontiers in Microbiology, 14, 1291030.
  • Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., ... & Takaishi, Y. (1995). Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. Journal of Ethnopharmacology, 46(3), 133-152.
  • Yılmaz, M., Yılmaz, A., Karaman, A., Aysin, F., & Aksakal, O. (2021). Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta, 225, 121952.
  • Yıldırım, A., Mavi, A., & Kara, A. A. (2003). Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts. Journal of the Science of Food and Agriculture, 83(1), 64-69.
  • Yiğit, U., & Türkkan, M. (2023). Antifungal activity and optimization procedure of microwave-synthesized silver nanoparticles using linden (Tilia rubra subsp. caucasica) flower extract. International Journal of Chemistry and Technology, 7(1), 25-37.
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm Makaleler
Yazarlar

Muharrem Türkkan 0000-0001-7779-9365

Yaren Gürel 0000-0002-9239-4005

Proje Numarası B-2217
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 11 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Türkkan, M., & Gürel, Y. (2024). Plackett‒Burman and Box‒Behnken Designs for Optimizing Polygonum cognatum Meissn-Mediated AgNP Synthesis: Antifungal Activity Against Diverse Phytophthora spp. Akademik Ziraat Dergisi, 13(2), 272-286. https://doi.org/10.29278/azd.1522321