Derleme
BibTex RIS Kaynak Göster

Neurobiology and Genetics of Behavioral Addictions: A Brief Review

Yıl 2022, , 233 - 241, 30.06.2022
https://doi.org/10.51982/bagimli.991533

Öz

Among behavioral addictions gambling disorder, sex, digital game, exercise, food, shopping and work addictions are similar to substance addictions at many points, including disruption in functionality, tolerance and withdrawal, comorbid diseases, genetic background and neuronal mechanisms. While neurobiological studies of behavioral addictions are very recent, research on biochemical, radiologic, genetic and treatment related features of behavioral addictions have revealed strong neurobiological associations with alcohol and substance addictions. Most of the studies in the literature focused on gambling addiction and internet addiction, but it is shown that beside their differences, there is also similar neurobiological and structural alterations exist in other behavioral addictions. It is important to recognize and understand behavioral addictions with their genetic and neurobiological aspects, to increase awareness of these disorders, to handle the process better and to develop prevention and treatment strategies. In this article, we reviewed data on the neurobiological and genetic manifestations and associated neurobiological pathways of behavioral addictions that are beginning to gain more attention from clinicians and researchers.

Destekleyen Kurum

-

Proje Numarası

-

Kaynakça

  • 1. Young, K.S., X.D. Yue, and L. Ying, Prevalence estimates and etiologic models of Internet addiction. Internet addiction: A handbook and guide to evaluation and treatment, 2011: p. 3-17.
  • 2. Black, D.W., Behavioural addictions as a way to classify behaviours. 2013, SAGE Publications Sage CA: Los Angeles, CA.
  • 3. Mann, K., et al., Behavioural addictions: Classification and consequences. European Psychiatry, 2017. 44: p. 187-188.
  • 4. AmericanPsychiatricAssociation, Diagnostic and statistical manual of mental disorders (DSM-5®). 2013: American Psychiatric Pub.
  • 5. Volkow, N.D., et al., Addiction: beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 2011. 108(37): p. 15037-15042.
  • 6. Hui, M. and Z. Gang, The dopamine system and alcohol dependence. Shanghai archives of psychiatry, 2014. 26(2): p. 61.
  • 7. Blum, K., et al., Reward deficiency syndrome. American Scientist, 1996. 84(2): p. 132-145.
  • 8. Grant, J.E., J.A. Brewer, and M.N. Potenza, The neurobiology of substance and behavioral addictions. CNS spectrums, 2006. 11(12): p. 924-930.
  • 9. Yau, M.Y.H. and M.N. Potenza, Gambling disorder and other behavioral addictions: recognition and treatment. Harvard review of psychiatry, 2015. 23(2): p. 134.
  • 10. Crockford, D.N. and N. el-Guebaly, Psychiatric comorbidity in pathological gambling: a critical review. The Canadian Journal of Psychiatry, 1998. 43(1): p. 43-50.
  • 11. Petry, N.M., F.S. Stinson, and B.F. Grant, Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. The Journal of clinical psychiatry, 2005.
  • 12. McCormick, R.A., et al., Affective disorders among pathological gamblers seeking treatment. The American journal of psychiatry, 1984.
  • 13. Cunningham-Williams, R.M., et al., Taking chances: problem gamblers and mental health disorders--results from the St. Louis Epidemiologic Catchment Area Study. American journal of public health, 1998. 88(7): p. 1093-1096.
  • 14. Blaszczynski, A., Pathological gambling and obsessive-compulsive spectrum disorders. Psychological reports, 1999. 84(1): p. 107-113.
  • 15. Van Holst, R.J., et al., Brain imaging studies in pathological gambling. Current psychiatry reports, 2010. 12(5): p. 418-425.
  • 16. Wise, R.A., Dopamine, learning and motivation. Nature reviews neuroscience, 2004. 5(6): p. 483-494.
  • 17. Koob, G.F. and N.D. Volkow, Neurocircuitry of addiction. Neuropsychopharmacology, 2010. 35(1): p. 217-238.
  • 18. Potenza, M.N., How central is dopamine to pathological gambling or gambling disorder? Frontiers in behavioral neuroscience, 2013. 7: p. 206.
  • 19. Boileau, I., et al., In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11 C]-(+)-PHNO. Molecular psychiatry, 2014. 19(12): p. 1305-1313.
  • 20. Cocker, P.J., et al., A selective role for dopamine D4 receptors in modulating reward expectancy in a rodent slot machine task. Biological psychiatry, 2014. 75(10): p. 817-824.
  • 21. Linnet, J., et al., Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scandinavian journal of psychology, 2011. 52(1): p. 28-34.
  • 22. Nordin, C. and T. Eklundh, Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS spectrums, 1999. 4(12): p. 25-33.
  • 23. Brewer, J.A. and M.N. Potenza, The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochemical pharmacology, 2008. 75(1): p. 63-75.
  • 24. Ibanez, A., et al., Pathological gambling and DNA polymorphic markers at MAO-A and MAO-B genes. Molecular psychiatry, 2000. 5(1): p. 105-109.
  • 25. de Castro, I.P., et al., Concurrent positive association between pathological gambling and functional DNA polymorphisms at the MAO-A and the 5-HT transporter genes. Molecular Psychiatry, 2002. 7(9): p. 927-928.
  • 26. Blanco, C., et al., Pathological gambling and platelet MAO activity: A psychobiological study. The American journal of psychiatry, 1996.
  • 27. Potenza, M.N., et al., Serotonin 1B receptor imaging in pathological gambling. The World Journal of Biological Psychiatry, 2013. 14(2): p. 139-145.
  • 28. Leeman, R.F. and M.N. Potenza, Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 2012. 219(2): p. 469-490.
  • 29. Cavedini, P., et al., Frontal lobe dysfunction in pathological gambling patients. Biological psychiatry, 2002. 51(4): p. 334-341.
  • 30. Dannon, P.N., et al., Pathological gambling: an impulse control disorder? Measurement of impulsivity using neurocognitive tests. IMAJ-Israel Medical Association Journal, 2010. 12(4): p. 243.
  • 31. Ren, Y., et al., Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data. Brain imaging and behavior, 2017. 11(4): p. 1179-1191.
  • 32. Reuter, J., et al., Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature neuroscience, 2005. 8(2): p. 147-148.
  • 33. Balodis, I.M., et al., Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological psychiatry, 2012. 71(8): p. 749-757.
  • 34. Choi, J.-S., et al., Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One, 2012. 7(9): p. e45938.
  • 35. Tanabe, J., et al., Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision‐making. Human brain mapping, 2007. 28(12): p. 1276-1286.
  • 36. Power, Y., B. Goodyear, and D. Crockford, Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: an fMRI study. Journal of Gambling Studies, 2012. 28(4): p. 623-636.
  • 37. Potenza, M.N., et al., An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 2003. 160(11): p. 1990-1994.
  • 38. Balconi, M., et al., Reward bias and lateralization in gambling behavior: behavioral activation system and alpha band analysis. Psychiatry research, 2014. 219(3): p. 570-576.
  • 39. Leyton, M. and P. Vezina, On cue: striatal ups and downs in addictions. Biological psychiatry, 2012. 72(10): p. e21-e22.
  • 40. van Holst, R.J., et al., Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biological psychiatry, 2012. 71(8): p. 741-748.
  • 41. Chase, H.W. and L. Clark, Gambling severity predicts midbrain response to near-miss outcomes. Journal of Neuroscience, 2010. 30(18): p. 6180-6187.
  • 42. Nautiyal, K.M., et al., Gambling disorder: an integrative review of animal and human studies. Annals of the New York Academy of Sciences, 2017. 1394(1): p. 106.
  • 43. Blanco, C., J. Myers, and K. Kendler, Gambling, disordered gambling and their association with major depression and substance use: a web-based cohort and twin-sibling study. Psychological medicine, 2012. 42(3): p. 497.
  • 44. Eisen, S., et al. The genetics of pathological gambling. in Seminars in clinical neuropsychiatry. 2001.
  • 45. Slutske, W.S., et al., Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Research and Human Genetics, 2013. 16(2): p. 525-534.
  • 46. Slutske, W.S., et al., Genetic and environmental influences on disordered gambling in men and women. Archives of general psychiatry, 2010. 67(6): p. 624-630.
  • 47. Comings, D.E., Why different rules are required for polygenic inheritance: lessons from studies of the DRD2 gene. Alcohol, 1998. 16(1): p. 61-70.
  • 48. Comings, D.E., et al., A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics, 1996. 6(3): p. 223-234.
  • 49. Lobo, D.S., et al., Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biological psychology, 2010. 85(1): p. 33-37.
  • 50. Sullivan, E.V. and A. Pfefferbaum, Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology, 2005. 180(4): p. 583-594.
  • 51. de Castro, I.P., et al., Genetic contribution to pathological gambling: possible association between a functional DNA polymorphism at the serotonin transporter gene (5-HTT) and affected men. Pharmacogenetics and Genomics, 1999. 9(3): p. 397-400.
  • 52. Lobo, D.S., et al., Addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Molecular psychiatry, 2015. 20(8): p. 1002-1010.
  • 53. Comings, D.E., et al., Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. American journal of medical genetics, 1999. 88(4): p. 358-368.
  • 54. Grant, J.E., et al., COMT genotype, gambling activity, and cognition. Journal of psychiatric research, 2015. 68: p. 371-376.
  • 55. Wilson, D., et al., Family-based association analysis of serotonin genes in pathological gambling disorder: evidence of vulnerability risk in the 5HT-2A receptor gene. Journal of Molecular Neuroscience, 2013. 49(3): p. 550-553.
  • 56. Young, K.S., Internet addiction: A new clinical phenomenon and its consequences. American behavioral scientist, 2004. 48(4): p. 402-415.
  • 57. Lu, D.W., J.W. Wang, and A.C.W. Huang, Differentiation of Internet addiction risk level based on autonomic nervous responses: the Internet-addiction hypothesis of autonomic activity. Cyberpsychology, Behavior, and Social Networking, 2010. 13(4): p. 371-378.
  • 58. Kim, E.H. and N.H. Kim, Comparison of stress level and HPA axis activity of internet game addiction vs. non-addiction in adolescents. Journal of Korean Biological Nursing Science, 2013. 15(4): p. 173-183.
  • 59. Kim, N., et al., Resting-State Peripheral Catecholamine and Anxiety Levels in Korean Male Adolescents with Internet Game Addiction. Cyberpsychol Behav Soc Netw, 2016. 19(3): p. 202-8.
  • 60. Liu, M. and J. Luo, Relationship between peripheral blood dopamine level and internet addiction disorder in adolescents: a pilot study. International journal of clinical and experimental medicine, 2015. 8(6): p. 9943.
  • 61. Zhang, H.-X., et al., Comparison of psychological symptoms and serum levels of neurotransmitters in Shanghai adolescents with and without internet addiction disorder: a case-control study. PloS one, 2013. 8(5): p. e63089.
  • 62. Yuan, K., et al., Cortical thickness abnormalities in late adolescence with online gaming addiction. PloS one, 2013. 8(1): p. e53055.
  • 63. Zhu, Y., H. Zhang, and M. Tian, Molecular and functional imaging of internet addiction. BioMed research international, 2015. 2015.
  • 64. Ding, W.-n., et al., Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PloS one, 2013. 8(3): p. e59902.
  • 65. Tian, M., et al., PET imaging reveals brain functional changes in internet gaming disorder. European Journal of Nuclear Medicine and Molecular Imaging, 2014. 41(7): p. 1388-1397.
  • 66. Dong, G., J. Huang, and X. Du, Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. Journal of psychiatric research, 2011. 45(11): p. 1525-1529.
  • 67. Kim, S.H., et al., Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport, 2011. 22(8): p. 407-411.
  • 68. Hou, H., et al., Reduced striatal dopamine transporters in people with internet addiction disorder. Journal of Biomedicine and Biotechnology, 2012. 2012.
  • 69. Ko, C.-H., et al., Brain activities associated with gaming urge of online gaming addiction. Journal of psychiatric research, 2009. 43(7): p. 739-747.
  • 70. Han, D.H., et al., Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology, Behavior, and Social Networking, 2010. 13(6): p. 655-661.
  • 71. Ko, C.H., et al., Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction biology, 2013. 18(3): p. 559-569.
  • 72. Lorenz, R.C., et al., Cue reactivity and its inhibition in pathological computer game players. Addiction biology, 2013. 18(1): p. 134-146.
  • 73. Feng, Q., et al., Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction. Behavioral and Brain Functions, 2013. 9(1): p. 33.
  • 74. Vink, J.M., et al., Heritability of compulsive I nternet use in adolescents. Addiction biology, 2016. 21(2): p. 460-468.
  • 75. Lee, Y.S., et al., Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. Journal of affective disorders, 2008. 109(1-2): p. 165-169.
  • 76. Montag, C., et al., The role of the CHRNA4 gene in Internet addiction: a case-control study. Journal of addiction medicine, 2012. 6(3): p. 191-195.
  • 77. Tuomisto, T., et al., Psychological and physiological characteristics of sweet food “addiction”. International Journal of Eating Disorders, 1999. 25(2): p. 169-175.
  • 78. Çopur, M. and N.S. Tınkır, Yeme Bağımlılığı. Türkiye Klinikleri Çocuk Psikiyatrisi-Özel Konular, 2020. 6(1): p. 47-53.
  • 79. Schultz, W., Updating dopamine reward signals. Current opinion in neurobiology, 2013. 23(2): p. 229-238.
  • 80. Schultz, W., Behavioral dopamine signals. Trends in neurosciences, 2007. 30(5): p. 203-210.
  • 81. Baik, J.-H., Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB reports, 2013. 46(11): p. 519.
  • 82. Wang, G.-J., et al., Brain dopamine and obesity. The Lancet, 2001. 357(9253): p. 354-357.
  • 83. Johnson, P.M. and P.J. Kenny, Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature neuroscience, 2010. 13(5): p. 635.
  • 84. Sescousse, G., et al., Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 2013. 37(4): p. 681-696.
  • 85. Haase, L., B. Cerf-Ducastel, and C. Murphy, Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage, 2009. 44(3): p. 1008-1021.
  • 86. Bragulat, V., et al., Food‐related odor probes of brain reward circuits during hunger: a pilot fMRI study. Obesity, 2010. 18(8): p. 1566-1571.
  • 87. Romer, A.L., et al., Dopamine genetic risk is related to food addiction and body mass through reduced reward-related ventral striatum activity. Appetite, 2019. 133: p. 24-31.
  • 88. Davis, C., et al., Reward sensitivity and the D2 dopamine receptor gene: A case-control study of binge eating disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008. 32(3): p. 620-628.
  • 89. Davis, C., et al., & Kennedy, J. L.(2009). Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity.
  • 90. Kafka, M.P., The development and evolution of the criteria for a newly proposed diagnosis for DSM-5: Hypersexual disorder. Sexual Addiction & Compulsivity, 2013. 20(1-2): p. 19-26.
  • 91. Walters, G.D., R.A. Knight, and N. Långström, Is hypersexuality dimensional? Evidence for the DSM-5 from general population and clinical samples. Archives of Sexual Behavior, 2011. 40(6): p. 1309-1321.
  • 92. Wéry, A., et al., Characteristics of self-identified sexual addicts in a behavioral addiction outpatient clinic. Journal of Behavioral Addictions, 2016. 5(4): p. 623-630.
  • 93. Karila, L., et al., Sexual addiction or hypersexual disorder: Different terms for the same problem? A review of the literature. Current pharmaceutical design, 2014. 20(25): p. 4012-4020.
  • 94. Rosenberg, K.P., P. Carnes, and S. O'Connor, Evaluation and treatment of sex addiction. Journal of Sex & Marital Therapy, 2014. 40(2): p. 77-91.
  • 95. Allen, A., L. Kannis-Dymand, and M. Katsikitis, Problematic internet pornography use: The role of craving, desire thinking, and metacognition. Addictive behaviors, 2017. 70: p. 65-71.
  • 96. Weintraub, D., et al., Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of neurology, 2010. 67(5): p. 589-595.
  • 97. Raymond, N.C., J.E. Grant, and E. Coleman, Augmentation with naltrexone to treat compulsive sexual behavior: a case series. , 22, 1, 2010. 22(1): p. 56-62.
  • 98. Wainberg, M.L., et al., A double-blind study of citalopram versus placebo in the treatment of compulsive sexual behaviors in gay and bisexual men. The Journal of clinical psychiatry, 2006.
  • 99. Miner, M.H., et al., Preliminary investigation of the impulsive and neuroanatomical characteristics of compulsive sexual behavior. Psychiatry Research: Neuroimaging, 2009. 174(2): p. 146-151.
  • 100. Voon, V., et al., Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. PloS one, 2014. 9(7): p. e102419.
  • 101. Politis, M., et al., Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain, 2013. 136(2): p. 400-411.
  • 102. Kühn, S. and J. Gallinat, Brain structure and functional connectivity associated with pornography consumption: the brain on porn. JAMA psychiatry, 2014. 71(7): p. 827-834.
  • 103. Steele, V.R., et al., Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffective neuroscience & psychology, 2013. 3(1): p. 20770.
  • 104. Perry, D.C., et al., Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain, 2014. 137(6): p. 1621-1626.
  • 105. Kataoka, H., et al., Increased medial temporal blood flow in Parkinson's disease with pathological hypersexuality. Movement Disorders, 2009. 24(3): p. 471-473.
  • 106. Schneider, J. and B. Schneider, Couple recovery from sexual addiction: research findings of a survey of 88 marriages. Sex Addict Compulsivity, 1996. 3: p. 111-26.
  • 107. Miller, W.B., et al., Dopamine receptor genes are associated with age at first sexual intercourse. Journal of biosocial science, 1999. 31(1): p. 43-54.
  • 108. Guo, G. and Y. Tong, Age at first sexual intercourse, genes, and social context: Evidence from twins and the dopamine D4 receptor gene. Demography, 2006. 43(4): p. 747-769.
  • 109. Huang, C.-J., et al., Distribution of HLA-DQB1 alleles in patients with Kleine-Levin syndrome. Journal of Clinical Neuroscience, 2012. 19(4): p. 628-630.
  • 110. Mestre-Bach, G., et al., Differences and similarities between compulsive buying and other addictive behaviors. Current addiction reports, 2017. 4(3): p. 228-236.
  • 111. Zhang, C., et al., Compulsive buying and quality of life: An estimate of the monetary cost of compulsive buying among adults in early midlife. Psychiatry research, 2017. 252: p. 208-214.
  • 112. McLaughlin, T., et al., Pro-dopamine regulator, KB220Z, attenuates hoarding and shopping behavior in a female, diagnosed with SUD and ADHD. Journal of behavioral addictions, 2018. 7(1): p. 192-203.
  • 113. Borker, A. and J. Mascarenhas, Role of acetylcholine and dopamine in dorsal hippocampus on hoarding behavior in rats. Indian Journal of Physiology and Pharmacology, 1991. 35(1): p. 71-73.
  • 114. Kelley, A.E. and L. Stinus, Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with {l}-dopa. Behavioral neuroscience, 1985. 99(3): p. 531.
  • 115. Koran, L.M., et al., Citalopram treatment of compulsive shopping: an open-label study. The Journal of clinical psychiatry, 2002.
  • 116. Koran, L.M., et al., Citalopram for compulsive shopping disorder: an open-label study followed by double-blind discontinuation. The Journal of clinical psychiatry, 2003. 64(7): p. 793-798.
  • 117. Raab, G., et al., A neurological study of compulsive buying behaviour. Journal of Consumer Policy, 2011. 34(4): p. 401.
  • 118. Knutson, B., et al., Neural predictors of purchases. Neuron, 2007. 53(1): p. 147-156.
  • 119. Derbyshire, K.L., et al., Neurocognitive functioning in compulsive buying disorder. , 26, 1, 2014. 26(1): p. 57-63.
  • 120. Black, D.W., et al., Family history and psychiatric comorbidity in persons with compulsive buying: preliminary findings. American Journal of Psychiatry, 1998. 155(7): p. 960-963.
  • 121. Devor, E.J., et al., Serotonin transporter gene (5‐HTT) polymorphisms and compulsive buying. American journal of medical genetics, 1999. 88(2): p. 123-125.
  • 122. Adams, J. and R.J. Kirkby, Excessive exercise as an addiction: A review. Addiction Research & Theory, 2002. 10(5): p. 415-437.
  • 123. Zmijewski, C.F. and M.O. Howard, Exercise dependence and attitudes toward eating among young adults. Eating behaviors, 2003. 4(2): p. 181-195.
  • 124. Herrera, J.J., et al., Neurochemical and behavioural indices of exercise reward are independent of exercise controllability. European Journal of Neuroscience, 2016. 43(9): p. 1190-1202.
  • 125. Hasegawa, H., et al., Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. Journal of neuroscience methods, 2011. 202(2): p. 119-123.
  • 126. Hillman, C.H., K.I. Erickson, and A.F. Kramer, Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 2008. 9(1): p. 58-65.
  • 127. Kramer, A.F. and K.I. Erickson, Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in cognitive sciences, 2007. 11(8): p. 342-348.
  • 128. Vivar, C., M.C. Potter, and H. van Praag, All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis, in Neurogenesis and neural plasticity. 2012, Springer. p. 189-210.
  • 129. Hoffmann, P., P. Thorén, and D. Ely, Effect of voluntary exercise on open-field behavior and on aggression in the spontaneously hypertensive rat (SHR). Behavioral and neural biology, 1987. 47(3): p. 346-355.
  • 130. Van Praag, H., et al., Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 2005. 25(38): p. 8680-8685.
  • 131. Yau, S.-y., et al., Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BioMed research international, 2014. 2014.
  • 132. Van der Borght, K., et al., Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behavioral neuroscience, 2007. 121(2): p. 324.
  • 133. Merkley, C.M., et al., Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise. Frontiers in neuroscience, 2014. 8: p. 174.
  • 134. Biedermann, S., et al., In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage, 2012. 61(4): p. 1206-1212.
  • 135. Li, S., et al., Exercise-based interventions for internet addiction: neurobiological and neuropsychological evidence. Frontiers in Psychology, 2020. 11: p. 1296.
  • 136. Staples, M.C., S.S. Somkuwar, and C.D. Mandyam, Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats. Neuroscience, 2015. 305: p. 248-256.
  • 137. Robison, L.S., et al., Exercise Reduces Dopamine D1R and Increases D2R in Rats: Implications for Addiction. Medicine and science in sports and exercise, 2018. 50(8): p. 1596-1602.
  • 138. Bjørnebekk, A., A.A. Mathé, and S. Brené, The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 2005. 8(3): p. 357-368.
  • 139. Brené, S., et al., Running is rewarding and antidepressive. Physiology & behavior, 2007. 92(1-2): p. 136-140.
  • 140. Werme, M., et al., Addiction-prone Lewis but not Fischer rats develop compulsive running that coincides with downregulation of nerve growth factor inducible-B and neuron-derived orphan receptor 1. Journal of Neuroscience, 1999. 19(14): p. 6169-6174.
  • 141. Weinstein, A. and Y. Weinstein, Exercise addiction-diagnosis, bio-psychological mechanisms and treatment issues. Current Pharmaceutical Design, 2014. 20(25): p. 4062-4069.

Davranışsal Bağımlılıkların Nörobiyolojisi ve Genetiği: Kısa Bir Gözden Geçirme

Yıl 2022, , 233 - 241, 30.06.2022
https://doi.org/10.51982/bagimli.991533

Öz

Kumar oynama bozukluğu, seks bağımlılığı, dijital oyun bağımlılığı, egzersiz bağımlılığı, internet bağımlılığı, yeme bağımlılığı, alışveriş bağımlılığı ve iş bağımlılığı gibi davranışsal bağımlılıklar, işlevsellikte bozulma, tolerans ve çekilme, eşlik eden hastalıklar, nöronal yolaklar ve genetik arka plan dahil olmak üzere birçok noktada madde bağımlılıklarına benzemektedir. Bu alandaki nörobiyolojik araştırmalar henüz yeni olmakla birlikte, davranışsal bağımlılıklar biyokimyasal, radyolojik ve genetik özellikler açısından ele alındığında, madde kullanım bozuklukları ile güçlü nörobiyolojik ilişkiler ortaya çıkarmıştır. Literatürdeki çalışmaların çoğu kumar bağımlılığı ve internet bağımlılığı üzerine odaklanmış ancak diğer davranışsal bağımlılıkların da farklılıklarının yanı sıra benzer bazı yapısal değişikliklere de sahip oldukları gösterilmiştir. Davranışsal bağımlılıkları genetik ve nörobiyolojik yönleriyle tanımak ve anlamak, bu bozukluklara ilişkin farkındalığı artırmak, süreci daha iyi ele almak, önleme ve tedavi stratejileri geliştirmek açısından önemlidir. Bu yazıda, klinisyenler ve araştırmacılar tarafından son yıllarda daha fazla ilgi görmeye başlayan davranışsal bağımlılıkların nörobiyolojik ve genetik özellikleri ve ilişkili nörobiyolojik yolaklara ilişkin verileri gözden geçirmeyi amaçladık.

Proje Numarası

-

Kaynakça

  • 1. Young, K.S., X.D. Yue, and L. Ying, Prevalence estimates and etiologic models of Internet addiction. Internet addiction: A handbook and guide to evaluation and treatment, 2011: p. 3-17.
  • 2. Black, D.W., Behavioural addictions as a way to classify behaviours. 2013, SAGE Publications Sage CA: Los Angeles, CA.
  • 3. Mann, K., et al., Behavioural addictions: Classification and consequences. European Psychiatry, 2017. 44: p. 187-188.
  • 4. AmericanPsychiatricAssociation, Diagnostic and statistical manual of mental disorders (DSM-5®). 2013: American Psychiatric Pub.
  • 5. Volkow, N.D., et al., Addiction: beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 2011. 108(37): p. 15037-15042.
  • 6. Hui, M. and Z. Gang, The dopamine system and alcohol dependence. Shanghai archives of psychiatry, 2014. 26(2): p. 61.
  • 7. Blum, K., et al., Reward deficiency syndrome. American Scientist, 1996. 84(2): p. 132-145.
  • 8. Grant, J.E., J.A. Brewer, and M.N. Potenza, The neurobiology of substance and behavioral addictions. CNS spectrums, 2006. 11(12): p. 924-930.
  • 9. Yau, M.Y.H. and M.N. Potenza, Gambling disorder and other behavioral addictions: recognition and treatment. Harvard review of psychiatry, 2015. 23(2): p. 134.
  • 10. Crockford, D.N. and N. el-Guebaly, Psychiatric comorbidity in pathological gambling: a critical review. The Canadian Journal of Psychiatry, 1998. 43(1): p. 43-50.
  • 11. Petry, N.M., F.S. Stinson, and B.F. Grant, Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. The Journal of clinical psychiatry, 2005.
  • 12. McCormick, R.A., et al., Affective disorders among pathological gamblers seeking treatment. The American journal of psychiatry, 1984.
  • 13. Cunningham-Williams, R.M., et al., Taking chances: problem gamblers and mental health disorders--results from the St. Louis Epidemiologic Catchment Area Study. American journal of public health, 1998. 88(7): p. 1093-1096.
  • 14. Blaszczynski, A., Pathological gambling and obsessive-compulsive spectrum disorders. Psychological reports, 1999. 84(1): p. 107-113.
  • 15. Van Holst, R.J., et al., Brain imaging studies in pathological gambling. Current psychiatry reports, 2010. 12(5): p. 418-425.
  • 16. Wise, R.A., Dopamine, learning and motivation. Nature reviews neuroscience, 2004. 5(6): p. 483-494.
  • 17. Koob, G.F. and N.D. Volkow, Neurocircuitry of addiction. Neuropsychopharmacology, 2010. 35(1): p. 217-238.
  • 18. Potenza, M.N., How central is dopamine to pathological gambling or gambling disorder? Frontiers in behavioral neuroscience, 2013. 7: p. 206.
  • 19. Boileau, I., et al., In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11 C]-(+)-PHNO. Molecular psychiatry, 2014. 19(12): p. 1305-1313.
  • 20. Cocker, P.J., et al., A selective role for dopamine D4 receptors in modulating reward expectancy in a rodent slot machine task. Biological psychiatry, 2014. 75(10): p. 817-824.
  • 21. Linnet, J., et al., Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scandinavian journal of psychology, 2011. 52(1): p. 28-34.
  • 22. Nordin, C. and T. Eklundh, Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS spectrums, 1999. 4(12): p. 25-33.
  • 23. Brewer, J.A. and M.N. Potenza, The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochemical pharmacology, 2008. 75(1): p. 63-75.
  • 24. Ibanez, A., et al., Pathological gambling and DNA polymorphic markers at MAO-A and MAO-B genes. Molecular psychiatry, 2000. 5(1): p. 105-109.
  • 25. de Castro, I.P., et al., Concurrent positive association between pathological gambling and functional DNA polymorphisms at the MAO-A and the 5-HT transporter genes. Molecular Psychiatry, 2002. 7(9): p. 927-928.
  • 26. Blanco, C., et al., Pathological gambling and platelet MAO activity: A psychobiological study. The American journal of psychiatry, 1996.
  • 27. Potenza, M.N., et al., Serotonin 1B receptor imaging in pathological gambling. The World Journal of Biological Psychiatry, 2013. 14(2): p. 139-145.
  • 28. Leeman, R.F. and M.N. Potenza, Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 2012. 219(2): p. 469-490.
  • 29. Cavedini, P., et al., Frontal lobe dysfunction in pathological gambling patients. Biological psychiatry, 2002. 51(4): p. 334-341.
  • 30. Dannon, P.N., et al., Pathological gambling: an impulse control disorder? Measurement of impulsivity using neurocognitive tests. IMAJ-Israel Medical Association Journal, 2010. 12(4): p. 243.
  • 31. Ren, Y., et al., Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data. Brain imaging and behavior, 2017. 11(4): p. 1179-1191.
  • 32. Reuter, J., et al., Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature neuroscience, 2005. 8(2): p. 147-148.
  • 33. Balodis, I.M., et al., Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological psychiatry, 2012. 71(8): p. 749-757.
  • 34. Choi, J.-S., et al., Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS One, 2012. 7(9): p. e45938.
  • 35. Tanabe, J., et al., Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision‐making. Human brain mapping, 2007. 28(12): p. 1276-1286.
  • 36. Power, Y., B. Goodyear, and D. Crockford, Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: an fMRI study. Journal of Gambling Studies, 2012. 28(4): p. 623-636.
  • 37. Potenza, M.N., et al., An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 2003. 160(11): p. 1990-1994.
  • 38. Balconi, M., et al., Reward bias and lateralization in gambling behavior: behavioral activation system and alpha band analysis. Psychiatry research, 2014. 219(3): p. 570-576.
  • 39. Leyton, M. and P. Vezina, On cue: striatal ups and downs in addictions. Biological psychiatry, 2012. 72(10): p. e21-e22.
  • 40. van Holst, R.J., et al., Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biological psychiatry, 2012. 71(8): p. 741-748.
  • 41. Chase, H.W. and L. Clark, Gambling severity predicts midbrain response to near-miss outcomes. Journal of Neuroscience, 2010. 30(18): p. 6180-6187.
  • 42. Nautiyal, K.M., et al., Gambling disorder: an integrative review of animal and human studies. Annals of the New York Academy of Sciences, 2017. 1394(1): p. 106.
  • 43. Blanco, C., J. Myers, and K. Kendler, Gambling, disordered gambling and their association with major depression and substance use: a web-based cohort and twin-sibling study. Psychological medicine, 2012. 42(3): p. 497.
  • 44. Eisen, S., et al. The genetics of pathological gambling. in Seminars in clinical neuropsychiatry. 2001.
  • 45. Slutske, W.S., et al., Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Research and Human Genetics, 2013. 16(2): p. 525-534.
  • 46. Slutske, W.S., et al., Genetic and environmental influences on disordered gambling in men and women. Archives of general psychiatry, 2010. 67(6): p. 624-630.
  • 47. Comings, D.E., Why different rules are required for polygenic inheritance: lessons from studies of the DRD2 gene. Alcohol, 1998. 16(1): p. 61-70.
  • 48. Comings, D.E., et al., A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics, 1996. 6(3): p. 223-234.
  • 49. Lobo, D.S., et al., Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biological psychology, 2010. 85(1): p. 33-37.
  • 50. Sullivan, E.V. and A. Pfefferbaum, Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology, 2005. 180(4): p. 583-594.
  • 51. de Castro, I.P., et al., Genetic contribution to pathological gambling: possible association between a functional DNA polymorphism at the serotonin transporter gene (5-HTT) and affected men. Pharmacogenetics and Genomics, 1999. 9(3): p. 397-400.
  • 52. Lobo, D.S., et al., Addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Molecular psychiatry, 2015. 20(8): p. 1002-1010.
  • 53. Comings, D.E., et al., Studies of the 48 bp repeat polymorphism of the DRD4 gene in impulsive, compulsive, addictive behaviors: Tourette syndrome, ADHD, pathological gambling, and substance abuse. American journal of medical genetics, 1999. 88(4): p. 358-368.
  • 54. Grant, J.E., et al., COMT genotype, gambling activity, and cognition. Journal of psychiatric research, 2015. 68: p. 371-376.
  • 55. Wilson, D., et al., Family-based association analysis of serotonin genes in pathological gambling disorder: evidence of vulnerability risk in the 5HT-2A receptor gene. Journal of Molecular Neuroscience, 2013. 49(3): p. 550-553.
  • 56. Young, K.S., Internet addiction: A new clinical phenomenon and its consequences. American behavioral scientist, 2004. 48(4): p. 402-415.
  • 57. Lu, D.W., J.W. Wang, and A.C.W. Huang, Differentiation of Internet addiction risk level based on autonomic nervous responses: the Internet-addiction hypothesis of autonomic activity. Cyberpsychology, Behavior, and Social Networking, 2010. 13(4): p. 371-378.
  • 58. Kim, E.H. and N.H. Kim, Comparison of stress level and HPA axis activity of internet game addiction vs. non-addiction in adolescents. Journal of Korean Biological Nursing Science, 2013. 15(4): p. 173-183.
  • 59. Kim, N., et al., Resting-State Peripheral Catecholamine and Anxiety Levels in Korean Male Adolescents with Internet Game Addiction. Cyberpsychol Behav Soc Netw, 2016. 19(3): p. 202-8.
  • 60. Liu, M. and J. Luo, Relationship between peripheral blood dopamine level and internet addiction disorder in adolescents: a pilot study. International journal of clinical and experimental medicine, 2015. 8(6): p. 9943.
  • 61. Zhang, H.-X., et al., Comparison of psychological symptoms and serum levels of neurotransmitters in Shanghai adolescents with and without internet addiction disorder: a case-control study. PloS one, 2013. 8(5): p. e63089.
  • 62. Yuan, K., et al., Cortical thickness abnormalities in late adolescence with online gaming addiction. PloS one, 2013. 8(1): p. e53055.
  • 63. Zhu, Y., H. Zhang, and M. Tian, Molecular and functional imaging of internet addiction. BioMed research international, 2015. 2015.
  • 64. Ding, W.-n., et al., Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PloS one, 2013. 8(3): p. e59902.
  • 65. Tian, M., et al., PET imaging reveals brain functional changes in internet gaming disorder. European Journal of Nuclear Medicine and Molecular Imaging, 2014. 41(7): p. 1388-1397.
  • 66. Dong, G., J. Huang, and X. Du, Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. Journal of psychiatric research, 2011. 45(11): p. 1525-1529.
  • 67. Kim, S.H., et al., Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport, 2011. 22(8): p. 407-411.
  • 68. Hou, H., et al., Reduced striatal dopamine transporters in people with internet addiction disorder. Journal of Biomedicine and Biotechnology, 2012. 2012.
  • 69. Ko, C.-H., et al., Brain activities associated with gaming urge of online gaming addiction. Journal of psychiatric research, 2009. 43(7): p. 739-747.
  • 70. Han, D.H., et al., Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychology, Behavior, and Social Networking, 2010. 13(6): p. 655-661.
  • 71. Ko, C.H., et al., Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction biology, 2013. 18(3): p. 559-569.
  • 72. Lorenz, R.C., et al., Cue reactivity and its inhibition in pathological computer game players. Addiction biology, 2013. 18(1): p. 134-146.
  • 73. Feng, Q., et al., Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction. Behavioral and Brain Functions, 2013. 9(1): p. 33.
  • 74. Vink, J.M., et al., Heritability of compulsive I nternet use in adolescents. Addiction biology, 2016. 21(2): p. 460-468.
  • 75. Lee, Y.S., et al., Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. Journal of affective disorders, 2008. 109(1-2): p. 165-169.
  • 76. Montag, C., et al., The role of the CHRNA4 gene in Internet addiction: a case-control study. Journal of addiction medicine, 2012. 6(3): p. 191-195.
  • 77. Tuomisto, T., et al., Psychological and physiological characteristics of sweet food “addiction”. International Journal of Eating Disorders, 1999. 25(2): p. 169-175.
  • 78. Çopur, M. and N.S. Tınkır, Yeme Bağımlılığı. Türkiye Klinikleri Çocuk Psikiyatrisi-Özel Konular, 2020. 6(1): p. 47-53.
  • 79. Schultz, W., Updating dopamine reward signals. Current opinion in neurobiology, 2013. 23(2): p. 229-238.
  • 80. Schultz, W., Behavioral dopamine signals. Trends in neurosciences, 2007. 30(5): p. 203-210.
  • 81. Baik, J.-H., Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB reports, 2013. 46(11): p. 519.
  • 82. Wang, G.-J., et al., Brain dopamine and obesity. The Lancet, 2001. 357(9253): p. 354-357.
  • 83. Johnson, P.M. and P.J. Kenny, Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature neuroscience, 2010. 13(5): p. 635.
  • 84. Sescousse, G., et al., Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 2013. 37(4): p. 681-696.
  • 85. Haase, L., B. Cerf-Ducastel, and C. Murphy, Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage, 2009. 44(3): p. 1008-1021.
  • 86. Bragulat, V., et al., Food‐related odor probes of brain reward circuits during hunger: a pilot fMRI study. Obesity, 2010. 18(8): p. 1566-1571.
  • 87. Romer, A.L., et al., Dopamine genetic risk is related to food addiction and body mass through reduced reward-related ventral striatum activity. Appetite, 2019. 133: p. 24-31.
  • 88. Davis, C., et al., Reward sensitivity and the D2 dopamine receptor gene: A case-control study of binge eating disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008. 32(3): p. 620-628.
  • 89. Davis, C., et al., & Kennedy, J. L.(2009). Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity.
  • 90. Kafka, M.P., The development and evolution of the criteria for a newly proposed diagnosis for DSM-5: Hypersexual disorder. Sexual Addiction & Compulsivity, 2013. 20(1-2): p. 19-26.
  • 91. Walters, G.D., R.A. Knight, and N. Långström, Is hypersexuality dimensional? Evidence for the DSM-5 from general population and clinical samples. Archives of Sexual Behavior, 2011. 40(6): p. 1309-1321.
  • 92. Wéry, A., et al., Characteristics of self-identified sexual addicts in a behavioral addiction outpatient clinic. Journal of Behavioral Addictions, 2016. 5(4): p. 623-630.
  • 93. Karila, L., et al., Sexual addiction or hypersexual disorder: Different terms for the same problem? A review of the literature. Current pharmaceutical design, 2014. 20(25): p. 4012-4020.
  • 94. Rosenberg, K.P., P. Carnes, and S. O'Connor, Evaluation and treatment of sex addiction. Journal of Sex & Marital Therapy, 2014. 40(2): p. 77-91.
  • 95. Allen, A., L. Kannis-Dymand, and M. Katsikitis, Problematic internet pornography use: The role of craving, desire thinking, and metacognition. Addictive behaviors, 2017. 70: p. 65-71.
  • 96. Weintraub, D., et al., Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Archives of neurology, 2010. 67(5): p. 589-595.
  • 97. Raymond, N.C., J.E. Grant, and E. Coleman, Augmentation with naltrexone to treat compulsive sexual behavior: a case series. , 22, 1, 2010. 22(1): p. 56-62.
  • 98. Wainberg, M.L., et al., A double-blind study of citalopram versus placebo in the treatment of compulsive sexual behaviors in gay and bisexual men. The Journal of clinical psychiatry, 2006.
  • 99. Miner, M.H., et al., Preliminary investigation of the impulsive and neuroanatomical characteristics of compulsive sexual behavior. Psychiatry Research: Neuroimaging, 2009. 174(2): p. 146-151.
  • 100. Voon, V., et al., Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours. PloS one, 2014. 9(7): p. e102419.
  • 101. Politis, M., et al., Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain, 2013. 136(2): p. 400-411.
  • 102. Kühn, S. and J. Gallinat, Brain structure and functional connectivity associated with pornography consumption: the brain on porn. JAMA psychiatry, 2014. 71(7): p. 827-834.
  • 103. Steele, V.R., et al., Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffective neuroscience & psychology, 2013. 3(1): p. 20770.
  • 104. Perry, D.C., et al., Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain, 2014. 137(6): p. 1621-1626.
  • 105. Kataoka, H., et al., Increased medial temporal blood flow in Parkinson's disease with pathological hypersexuality. Movement Disorders, 2009. 24(3): p. 471-473.
  • 106. Schneider, J. and B. Schneider, Couple recovery from sexual addiction: research findings of a survey of 88 marriages. Sex Addict Compulsivity, 1996. 3: p. 111-26.
  • 107. Miller, W.B., et al., Dopamine receptor genes are associated with age at first sexual intercourse. Journal of biosocial science, 1999. 31(1): p. 43-54.
  • 108. Guo, G. and Y. Tong, Age at first sexual intercourse, genes, and social context: Evidence from twins and the dopamine D4 receptor gene. Demography, 2006. 43(4): p. 747-769.
  • 109. Huang, C.-J., et al., Distribution of HLA-DQB1 alleles in patients with Kleine-Levin syndrome. Journal of Clinical Neuroscience, 2012. 19(4): p. 628-630.
  • 110. Mestre-Bach, G., et al., Differences and similarities between compulsive buying and other addictive behaviors. Current addiction reports, 2017. 4(3): p. 228-236.
  • 111. Zhang, C., et al., Compulsive buying and quality of life: An estimate of the monetary cost of compulsive buying among adults in early midlife. Psychiatry research, 2017. 252: p. 208-214.
  • 112. McLaughlin, T., et al., Pro-dopamine regulator, KB220Z, attenuates hoarding and shopping behavior in a female, diagnosed with SUD and ADHD. Journal of behavioral addictions, 2018. 7(1): p. 192-203.
  • 113. Borker, A. and J. Mascarenhas, Role of acetylcholine and dopamine in dorsal hippocampus on hoarding behavior in rats. Indian Journal of Physiology and Pharmacology, 1991. 35(1): p. 71-73.
  • 114. Kelley, A.E. and L. Stinus, Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with {l}-dopa. Behavioral neuroscience, 1985. 99(3): p. 531.
  • 115. Koran, L.M., et al., Citalopram treatment of compulsive shopping: an open-label study. The Journal of clinical psychiatry, 2002.
  • 116. Koran, L.M., et al., Citalopram for compulsive shopping disorder: an open-label study followed by double-blind discontinuation. The Journal of clinical psychiatry, 2003. 64(7): p. 793-798.
  • 117. Raab, G., et al., A neurological study of compulsive buying behaviour. Journal of Consumer Policy, 2011. 34(4): p. 401.
  • 118. Knutson, B., et al., Neural predictors of purchases. Neuron, 2007. 53(1): p. 147-156.
  • 119. Derbyshire, K.L., et al., Neurocognitive functioning in compulsive buying disorder. , 26, 1, 2014. 26(1): p. 57-63.
  • 120. Black, D.W., et al., Family history and psychiatric comorbidity in persons with compulsive buying: preliminary findings. American Journal of Psychiatry, 1998. 155(7): p. 960-963.
  • 121. Devor, E.J., et al., Serotonin transporter gene (5‐HTT) polymorphisms and compulsive buying. American journal of medical genetics, 1999. 88(2): p. 123-125.
  • 122. Adams, J. and R.J. Kirkby, Excessive exercise as an addiction: A review. Addiction Research & Theory, 2002. 10(5): p. 415-437.
  • 123. Zmijewski, C.F. and M.O. Howard, Exercise dependence and attitudes toward eating among young adults. Eating behaviors, 2003. 4(2): p. 181-195.
  • 124. Herrera, J.J., et al., Neurochemical and behavioural indices of exercise reward are independent of exercise controllability. European Journal of Neuroscience, 2016. 43(9): p. 1190-1202.
  • 125. Hasegawa, H., et al., Continuous monitoring of hypothalamic neurotransmitters and thermoregulatory responses in exercising rats. Journal of neuroscience methods, 2011. 202(2): p. 119-123.
  • 126. Hillman, C.H., K.I. Erickson, and A.F. Kramer, Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, 2008. 9(1): p. 58-65.
  • 127. Kramer, A.F. and K.I. Erickson, Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in cognitive sciences, 2007. 11(8): p. 342-348.
  • 128. Vivar, C., M.C. Potter, and H. van Praag, All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis, in Neurogenesis and neural plasticity. 2012, Springer. p. 189-210.
  • 129. Hoffmann, P., P. Thorén, and D. Ely, Effect of voluntary exercise on open-field behavior and on aggression in the spontaneously hypertensive rat (SHR). Behavioral and neural biology, 1987. 47(3): p. 346-355.
  • 130. Van Praag, H., et al., Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 2005. 25(38): p. 8680-8685.
  • 131. Yau, S.-y., et al., Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BioMed research international, 2014. 2014.
  • 132. Van der Borght, K., et al., Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behavioral neuroscience, 2007. 121(2): p. 324.
  • 133. Merkley, C.M., et al., Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise. Frontiers in neuroscience, 2014. 8: p. 174.
  • 134. Biedermann, S., et al., In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage, 2012. 61(4): p. 1206-1212.
  • 135. Li, S., et al., Exercise-based interventions for internet addiction: neurobiological and neuropsychological evidence. Frontiers in Psychology, 2020. 11: p. 1296.
  • 136. Staples, M.C., S.S. Somkuwar, and C.D. Mandyam, Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats. Neuroscience, 2015. 305: p. 248-256.
  • 137. Robison, L.S., et al., Exercise Reduces Dopamine D1R and Increases D2R in Rats: Implications for Addiction. Medicine and science in sports and exercise, 2018. 50(8): p. 1596-1602.
  • 138. Bjørnebekk, A., A.A. Mathé, and S. Brené, The antidepressant effect of running is associated with increased hippocampal cell proliferation. International Journal of Neuropsychopharmacology, 2005. 8(3): p. 357-368.
  • 139. Brené, S., et al., Running is rewarding and antidepressive. Physiology & behavior, 2007. 92(1-2): p. 136-140.
  • 140. Werme, M., et al., Addiction-prone Lewis but not Fischer rats develop compulsive running that coincides with downregulation of nerve growth factor inducible-B and neuron-derived orphan receptor 1. Journal of Neuroscience, 1999. 19(14): p. 6169-6174.
  • 141. Weinstein, A. and Y. Weinstein, Exercise addiction-diagnosis, bio-psychological mechanisms and treatment issues. Current Pharmaceutical Design, 2014. 20(25): p. 4062-4069.
Toplam 141 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Psikiyatri
Bölüm Derleme
Yazarlar

Filiz İzci 0000-0003-0576-9487

Nazife Gamze Usta Sağlam 0000-0003-4727-2460

Mine Ergelen 0000-0001-6022-3714

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 20 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

AMA İzci F, Usta Sağlam NG, Ergelen M. Neurobiology and Genetics of Behavioral Addictions: A Brief Review. Bağımlılık Dergisi. Haziran 2022;23(2):233-241. doi:10.51982/bagimli.991533

Bağımlılık Dergisi - Journal of Dependence