Derleme
BibTex RIS Kaynak Göster

Effects of Temperature on Plants and High Temperature Stress

Yıl 2022, , 139 - 147, 21.11.2022
https://doi.org/10.53471/bahce.1124625

Öz

There are factors that affect the germination, development and distribution of plants within the plant ecosystem. If these factors occur in the optimum conditions desired by the plant, a healthy growth takes place. One of the most important of these factors is temperature. Failure to meet this resource need causes negative effects on plants. It is very important to know the effects of the increasing temperature factor on plants due to global climate change and to understand the response mechanisms of the plant against it. However, it is important to understand the morphological, physiological and productive effects of increased heat stress on plants and to learn the responses of plants to it, in taking steps to develop temperature-tolerant genotypes. In this review, the effects of heat on plants and their responses to high heat stress are discussed.

Kaynakça

  • Ali, S., Rizwan, M., Arif, M. S., Ahmad, R., Hasanuzzaman, M., Ali, B., Hussain, A., 2020. Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation, 39(1), 456-480.
  • Baldocchi, D., Wong, S., 2008. Accumulated winter chill is decreasing in the fruit growing regions of California. Climatic Change, 87(1), 153-166.
  • Bita, C., Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
  • Boston, R. S., Viitanen, P. V.,Vierling, E., 1996. Molecular chaperones and protein folding in plants. Post-transcriptional Control of Gene Expression in Plants, 191-222.
  • Bueno, A., Alfarhan, A., Arand, K., Burghardt, M., Deininger, A. C., Hedrich, R., Riederer, M., 2019. Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. Journal of Experimental Botany, 70(5), 1613-1625.
  • Burke, J. J., O'Mahony, P. J., Oliver, M. J., 2000. Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology, 123(2), 575-588.
  • Chen, H. H., Shen, Z. Y., Li, P. H., 1982. Adaptability of crop plants to high temperature stress [Bean, potato, soybean, tomato, heat tolerance, viability tests]. Crop Science (USA).
  • Giri, A., Heckathorn, S., Mishra, S., Krause, C., 2017. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants, 6(1), 6.
  • Gusta, L. V., Chen, T. H. H., 1987. The physiology of water and temperature stress. Wheat and Wheat Improvement, 13, 115-150.
  • Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684.
  • Hatfield, J. L., Prueger, J. H., 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10.
  • Hull, J. C., Neufeld, H. S., Gilliam, F. S., 2008. Plant ecology. Encyclopedia of Ecology, 2818-2824.
  • Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Wang, L., 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 1-12.
  • Khan, M. I. R., Asgher, M., Khan, N. A., 2013. Rising temperature in the changing environment: a serious threat to plants. Climate Change and Environmental Sustainability, 1(1), 25-36.
  • Khan, A., Ali, M., Khattak, A. M., Gai, W. X., Zhang, H. X., Gong, Z. H., 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 5321.
  • Kimpel, J. A., Key, J. L., 1985. Heat shock in plants. Trends in Biochemical Sciences, 10(9), 353-357.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin Abiyotik Stres Faktörlerine Karşı Geliştirilen Cevaplar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 192-207.
  • Krasensky, J., Jonak, C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608.
  • Körner, C., Hiltbrunner, E., 2018. The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 30, 16-21.
  • Kubota, C., 2020. Growth, development, transpiration, and translocation as affected by abiotic environmental factors. In Plant Factory (pp. 207-220). Academic Press.
  • Lancaster, L. T., Humphreys, A. M., 2020. Global variation in the thermal tolerances of plants. Proceedings of the National Academy of Sciences, 117(24), 13580-13587.
  • Levitt, J., 1980. Response of plants to environmental stresses: chilling, freezing, and high temperature stresses. Physiological Ecology: a series of monographs, texts, and treatises, 1, 23-64.
  • Li, D., Wang, M., Zhang, T., Chen, X., Li, C., Liu, Y., Yang, X., 2021. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. Photosynthesis Research, 147(3), 301-315.
  • Lindquist, S., Craig, E. A., 1988. The heat-shock proteins. Annual Review of Genetics, 22(1), 631-677.
  • Mansfield, M. A., Key, J. L., 1987. Synthesis of the low molecular weight heat shock proteins in plants. Plant Physiology, 84(4), 1007-1017.
  • Mathur, S., Agrawal, D., Jajoo, A., 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126.
  • Nievola, C. C., Carvalho, C. P., Carvalho, V., Rodrigues, E., 2017. Rapid responses of plants to temperature changes. Temperature, 4(4), 371-405.
  • Neumann, D.,1989. Heat shock and other stress response systems of plants. L. Nover, & K. D. Scharf (Eds.). Springer-Verlag.
  • Örs S., Ekinci M., 2015. Kuraklık stresi ve bitki fizyolojisi. Derim, 32(2), 237-250.
  • Özcan, M., 2020. Ekoloji Ders Notları, Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi. (https://avys.omu.edu.tr/storage/app/public/muozcan/126205/Ekoloji%20Ders%20Notu-2020.pdf), (Erişim: Aralık 2021).
  • Öztürk, M., Hakeem, K. R., Faridah-Hanum, I., Efe, R. (Eds.)., 2015. Climate change impacts on high-altitude ecosystems. Springer.
  • Pregitzer, K. S., King, J. S., 2005. Effects of soil temperature on nutrient uptake. In Nutrient acquisition by plants (pp. 277-310). Springer, Berlin, Heidelberg.
  • Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., Barone, A., 2019. Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy, 9(1), 22.
  • Sarto, C., Binz, P. A., Mocarelli, P., 2000. Heat shock proteins in human cancer. ELECTROPHORESIS: An International Journal, 21(6), 1218-1226.
  • Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Zheng, B., 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39(2), 509-531.
  • Sun, W., Van Montagu, M., Verbruggen, N., 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 1-9.
  • Taiz, L., Zeiger, E., Møller, I. M., Murphy, A., 2015. Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
  • Tkáčová, J., Angelovičová, M., 2012. Heat shock proteins (HSPs): a review. Cell, 17, 18.
  • Vierling, E., 1991. The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42(1), 579-620.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R., 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223.
  • Wang, W., Vinocur, B., & Altman, A., 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252.
  • Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., Prasad, P. V., 2000. Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1-3), 159-167.
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., Cai, Y., 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019.
  • Xu, Q., Chitnis, V. P., Ke, A., Chitnis, P. R., 1995. Structural organization of photosystem I. Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht, The Netherlands, 87-90.
  • Yang, L. Y., Yang, S. L., Li, J. Y., Ma, J. H., Pang, T., Zou, C. M., Gong, M., 2018. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Botanical Studies, 59(1), 1-13.
  • Yarwood, C. E., 1961. Acquired tolerance of leaves to heat. Science, 134(3483), 941-942.
  • Yıldız, M., & Terzi, H., 2007. Bitkilerin Yüksek Sıcaklık Stresine Toleransının Hücre Canlılığı Ve Fotosentetik Pigmentasyon Testleri İle Belirlenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 23(1), 47-60.

Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi

Yıl 2022, , 139 - 147, 21.11.2022
https://doi.org/10.53471/bahce.1124625

Öz

Bitki ekosistemi içerisinde bitkilerin çimlenme, gelişme ve dağılımında etkili olan faktörler mevcuttur. Bu faktörlerin bitkinin istediği optimum koşullarda gerçekleşmesi durumunda, sağlıklı bir büyüme gerçekleşir. Bu faktörlerin en önemlilerinden birisi de sıcaklıktır. Bu kaynak ihtiyacını karşılamada yaşanacak aksaklık, bitkilerde olumsuz etkilere neden olmaktadır. Küresel iklim değişikliğine bağlı olarak artan sıcaklık faktörünün bitkiler üzerindeki etkilerinin bilinmesi ve bitkinin buna karşı oluşturduğu cevap mekanizmalarının iyi anlaşılması oldukça önemlidir. Bununla birlikte artan sıcaklık stresinin bitkilerde morfolojik, fizyolojik ve verimsel açıdan meydana getirdiği etkileri anlamak ve bitkilerin buna karşı verdikleri tepkileri öğrenmek, sıcaklığa toleranslı genotiplerin geliştirilmesine yönelik adımları atmada önem arz etmektedir. Bu derlemede, sıcaklığın bitkiler üzerindeki etkileri ve yüksek sıcaklık stresine karşı verdiği cevaplar tartışılmıştır.

Kaynakça

  • Ali, S., Rizwan, M., Arif, M. S., Ahmad, R., Hasanuzzaman, M., Ali, B., Hussain, A., 2020. Approaches in enhancing thermotolerance in plants: an updated review. Journal of Plant Growth Regulation, 39(1), 456-480.
  • Baldocchi, D., Wong, S., 2008. Accumulated winter chill is decreasing in the fruit growing regions of California. Climatic Change, 87(1), 153-166.
  • Bita, C., Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
  • Boston, R. S., Viitanen, P. V.,Vierling, E., 1996. Molecular chaperones and protein folding in plants. Post-transcriptional Control of Gene Expression in Plants, 191-222.
  • Bueno, A., Alfarhan, A., Arand, K., Burghardt, M., Deininger, A. C., Hedrich, R., Riederer, M., 2019. Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. Journal of Experimental Botany, 70(5), 1613-1625.
  • Burke, J. J., O'Mahony, P. J., Oliver, M. J., 2000. Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology, 123(2), 575-588.
  • Chen, H. H., Shen, Z. Y., Li, P. H., 1982. Adaptability of crop plants to high temperature stress [Bean, potato, soybean, tomato, heat tolerance, viability tests]. Crop Science (USA).
  • Giri, A., Heckathorn, S., Mishra, S., Krause, C., 2017. Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants, 6(1), 6.
  • Gusta, L. V., Chen, T. H. H., 1987. The physiology of water and temperature stress. Wheat and Wheat Improvement, 13, 115-150.
  • Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684.
  • Hatfield, J. L., Prueger, J. H., 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10.
  • Hull, J. C., Neufeld, H. S., Gilliam, F. S., 2008. Plant ecology. Encyclopedia of Ecology, 2818-2824.
  • Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Wang, L., 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 1-12.
  • Khan, M. I. R., Asgher, M., Khan, N. A., 2013. Rising temperature in the changing environment: a serious threat to plants. Climate Change and Environmental Sustainability, 1(1), 25-36.
  • Khan, A., Ali, M., Khattak, A. M., Gai, W. X., Zhang, H. X., Gong, Z. H., 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 5321.
  • Kimpel, J. A., Key, J. L., 1985. Heat shock in plants. Trends in Biochemical Sciences, 10(9), 353-357.
  • Korkmaz, H., Durmaz, A., 2017. Bitkilerin Abiyotik Stres Faktörlerine Karşı Geliştirilen Cevaplar. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 192-207.
  • Krasensky, J., Jonak, C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608.
  • Körner, C., Hiltbrunner, E., 2018. The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 30, 16-21.
  • Kubota, C., 2020. Growth, development, transpiration, and translocation as affected by abiotic environmental factors. In Plant Factory (pp. 207-220). Academic Press.
  • Lancaster, L. T., Humphreys, A. M., 2020. Global variation in the thermal tolerances of plants. Proceedings of the National Academy of Sciences, 117(24), 13580-13587.
  • Levitt, J., 1980. Response of plants to environmental stresses: chilling, freezing, and high temperature stresses. Physiological Ecology: a series of monographs, texts, and treatises, 1, 23-64.
  • Li, D., Wang, M., Zhang, T., Chen, X., Li, C., Liu, Y., Yang, X., 2021. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. Photosynthesis Research, 147(3), 301-315.
  • Lindquist, S., Craig, E. A., 1988. The heat-shock proteins. Annual Review of Genetics, 22(1), 631-677.
  • Mansfield, M. A., Key, J. L., 1987. Synthesis of the low molecular weight heat shock proteins in plants. Plant Physiology, 84(4), 1007-1017.
  • Mathur, S., Agrawal, D., Jajoo, A., 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126.
  • Nievola, C. C., Carvalho, C. P., Carvalho, V., Rodrigues, E., 2017. Rapid responses of plants to temperature changes. Temperature, 4(4), 371-405.
  • Neumann, D.,1989. Heat shock and other stress response systems of plants. L. Nover, & K. D. Scharf (Eds.). Springer-Verlag.
  • Örs S., Ekinci M., 2015. Kuraklık stresi ve bitki fizyolojisi. Derim, 32(2), 237-250.
  • Özcan, M., 2020. Ekoloji Ders Notları, Ondokuz Mayıs Üniversitesi, Ziraat Fakültesi. (https://avys.omu.edu.tr/storage/app/public/muozcan/126205/Ekoloji%20Ders%20Notu-2020.pdf), (Erişim: Aralık 2021).
  • Öztürk, M., Hakeem, K. R., Faridah-Hanum, I., Efe, R. (Eds.)., 2015. Climate change impacts on high-altitude ecosystems. Springer.
  • Pregitzer, K. S., King, J. S., 2005. Effects of soil temperature on nutrient uptake. In Nutrient acquisition by plants (pp. 277-310). Springer, Berlin, Heidelberg.
  • Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., Barone, A., 2019. Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy, 9(1), 22.
  • Sarto, C., Binz, P. A., Mocarelli, P., 2000. Heat shock proteins in human cancer. ELECTROPHORESIS: An International Journal, 21(6), 1218-1226.
  • Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Zheng, B., 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39(2), 509-531.
  • Sun, W., Van Montagu, M., Verbruggen, N., 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 1-9.
  • Taiz, L., Zeiger, E., Møller, I. M., Murphy, A., 2015. Plant physiology and development (No. Ed. 6). Sinauer Associates Incorporated.
  • Tkáčová, J., Angelovičová, M., 2012. Heat shock proteins (HSPs): a review. Cell, 17, 18.
  • Vierling, E., 1991. The roles of heat shock proteins in plants. Annual Review of Plant Biology, 42(1), 579-620.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R., 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223.
  • Wang, W., Vinocur, B., & Altman, A., 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A., 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252.
  • Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., Prasad, P. V., 2000. Temperature variability and the yield of annual crops. Agriculture, Ecosystems & Environment, 82(1-3), 159-167.
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., Cai, Y., 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019.
  • Xu, Q., Chitnis, V. P., Ke, A., Chitnis, P. R., 1995. Structural organization of photosystem I. Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht, The Netherlands, 87-90.
  • Yang, L. Y., Yang, S. L., Li, J. Y., Ma, J. H., Pang, T., Zou, C. M., Gong, M., 2018. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Botanical Studies, 59(1), 1-13.
  • Yarwood, C. E., 1961. Acquired tolerance of leaves to heat. Science, 134(3483), 941-942.
  • Yıldız, M., & Terzi, H., 2007. Bitkilerin Yüksek Sıcaklık Stresine Toleransının Hücre Canlılığı Ve Fotosentetik Pigmentasyon Testleri İle Belirlenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 23(1), 47-60.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Bilimi
Bölüm Derlemeler
Yazarlar

Fulya Başaran 0000-0002-7381-9215

Zakire Tülay Aytaş Akçin 0000-0002-1716-3936

Yayımlanma Tarihi 21 Kasım 2022
Gönderilme Tarihi 1 Haziran 2022
Kabul Tarihi 24 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Başaran, F., & Aytaş Akçin, Z. T. (2022). Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi. Bahçe, 51(2), 139-147. https://doi.org/10.53471/bahce.1124625
AMA Başaran F, Aytaş Akçin ZT. Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi. Bahçe. Kasım 2022;51(2):139-147. doi:10.53471/bahce.1124625
Chicago Başaran, Fulya, ve Zakire Tülay Aytaş Akçin. “Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri Ve Yüksek Sıcaklık Stresi”. Bahçe 51, sy. 2 (Kasım 2022): 139-47. https://doi.org/10.53471/bahce.1124625.
EndNote Başaran F, Aytaş Akçin ZT (01 Kasım 2022) Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi. Bahçe 51 2 139–147.
IEEE F. Başaran ve Z. T. Aytaş Akçin, “Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi”, Bahçe, c. 51, sy. 2, ss. 139–147, 2022, doi: 10.53471/bahce.1124625.
ISNAD Başaran, Fulya - Aytaş Akçin, Zakire Tülay. “Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri Ve Yüksek Sıcaklık Stresi”. Bahçe 51/2 (Kasım 2022), 139-147. https://doi.org/10.53471/bahce.1124625.
JAMA Başaran F, Aytaş Akçin ZT. Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi. Bahçe. 2022;51:139–147.
MLA Başaran, Fulya ve Zakire Tülay Aytaş Akçin. “Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri Ve Yüksek Sıcaklık Stresi”. Bahçe, c. 51, sy. 2, 2022, ss. 139-47, doi:10.53471/bahce.1124625.
Vancouver Başaran F, Aytaş Akçin ZT. Sıcaklık Faktörünün Bitkiler Üzerindeki Etkileri ve Yüksek Sıcaklık Stresi. Bahçe. 2022;51(2):139-47.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram