Araştırma Makalesi
BibTex RIS Kaynak Göster

Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi

Yıl 2019, Cilt: 48 Sayı: 1, 39 - 48, 29.03.2019

Öz

Fenolik bileşikler üzümlere organoleptik özellikler kazandırmasının yanı sıra asmaları stres faktörlerine karşı koruyan bileşiklerdir. Bu bileşikler aynı zamanda insan sağlığına yararlı antioksidatif özelliklere sahiptirler. Fenolik bileşiklerin miktarları üzüm çeşitlerine ve dokulara göre değişmektedir. Bu araştırmada Denizli ilinin Çal ilçesinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi amaçlanmıştır. Boğazkere, Cabernet Sauvignon, Çal Karası, Merlot ve Öküzgözü (Vitis vinifera L.) çeşitlerine ait çekirdek, kabuk, salkım iskeleti ve yapraklar fenolik bileşik içerikleri ve antioksidan kapasiteleri yönüyle incelenmiştir. Araştırma sonuçlarına göre Öküzgözü çeşidi, dokularındaki fenolik bileşik içerikleri yönüyle ön plana çıkmıştır. En yüksek antioksidan kapasite (1.133,8 μmol trolox g⁻¹ Kuru Ağırlık), (+)–kateşin (29.652 mg kg⁻¹ Kuru Ağırlık), rutin (460,7 mg kg⁻¹ Kuru Ağırlık) ve trans–resveratrol (45,5 mg kg⁻¹ Kuru Ağırlık) miktarları Öküzgözü çeşidinin dokularından elde edilmiştir. Araştırmadan elde edilen bir diğer önemli sonuç ise, salkım iskeletinin de çekirdek gibi yüksek fenolik bileşik içeriğine sahip olduğunun tespit edilmesidir.

Destekleyen Kurum

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

11B4347003

Teşekkür

11B4347003 kod numaralı ve "Ülkemizde yetiştirilen asma tür ve çeşitlerinde antioksidan, resveratrol ve diğer fenolik bileşiklerin belirlenmesi üzerinde bir araştırma" isimli projeye sağladığı destek için Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederiz

Kaynakça

  • Lerner, A. and Matthias, T., 2015. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews 14:479–489.
  • Yang, J. and Xiao, Y.Y., 2013. Grape phytochemicals and associated health benefits. Critical Reviews in Food Science and Nutrition 53:1202–1225.
  • Banc, R., Loghin, F., Miere, D., Fetea, F. and Socaciu, C., 2014. Romanian wines quality and authenticity using FT–MIR spectroscopy coupled with multivariate data analysis. Notulae Botanicae Horti Agrobotanici Cluj–Napoca 42:556–564.
  • Gengaihi, S.E.L., Ella, F.M.A., Emad, M.H., Shalaby, E. and Doha, H., 2014. Antioxidant activity of phenolic compounds from different grape wastes. J. of Food Processing Technology 5:296–300.
  • Casazza, A.A., Aliakbarian, B., Mantegna, S., Cravotto, G. and Perego, P., 2010. Extraction of phenolics from Vitis vinifera wastes using non–conventional techniques. Journal of Food Engineering 100:50–55.
  • Tsuda, T., 2012. Dietary anthocyanin–rich plants: Biochemical basis and recent progress in health benefits studies. Molecular Nutrition and Food Research. 56:159–170.
  • Chuang, C.C., Shen, W., Chen, H., Xie, G., Jia, W., Chung, S. and McIntosh, M.K., 2012. Differential effects of grape powder and its extract on glucose tolerance and chronic inflammation in high–fat–fed obese mice. Journal of Agricultural and Food Chemistry 60:12458–12468.
  • Tomé–Carneiro, J., Gonzálvez, M., Larrosa, M., Yáñez–Gascón, M., García–Almagro, F., Ruiz–Ros, J., Tomás–Barberán, F., García–Conesa, M. and Espín, J., 2013. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple–blind, placebo–controlled, one–year clinical trial in patients with stable coronary artery disease. Cardiovascular Drugs Theraphy 27:37–48.
  • Zhou, K. and Raffoul, J.J., 2012. Potential anticancer properties of grape antioxidants. Journal of Oncology 2012:803294.
  • Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M. and Shinozaki, K., 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology 11:163.
  • Mazza, G., Fukumoto, L., Delaquis, P., Girard, B. and Ewert, B., 1999. Anthocyanins, phenolics and color of Cabernet Franc, Merlot and Pinot Noir wines from British Columbia. Journal of Agricultural and Food Chemistry 47:4009–4017.
  • Georgiev, V., Ananga A. and Tsolova, V., 2014. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 6:391–415. 13. Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M. and Molaie, R., 2016. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chemistry 199:847–855.
  • Koźmiński, P., Oliveira–Brett and A.M., 2008. Anthocyanin monitoring in four red grape skin extract varieties using RP–HPLC–ED. Analytical Letters 41:662–675.
  • Downey, M.O., Mazza, M. and Krstic, M.P., 2007. Development of a stable extract for anthocyanins and flavonols from grape skin. American Journal of Enology and Viticulture 58:358–364.
  • Anonim, 2018. Türkiye İstatistik Kurumu Tarım İstatistikleri (TUİK) (http://tuik.gov. tr/preçizelgearama.do?metod=search&aratype=vt) (Erişim Tarihi: 08.11.2018).
  • Waterhouse, A.L., 2005. Determination of total fenolics, in handbook of food analytical chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463–470, New Jersey.
  • Singleton, V.L. and Rossi, J.J.A., 1965. Colorimetric of totalmphenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144–158.
  • Giusti, M.M. and Wrolstad, R.E., 2001. Characterization and measurement of anthocyanins by UV–visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, USA, F1.2.1–F1.2.13.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice–Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine 26:1231–1237.
  • Lorrain, B., Chira, K. and Teissedre, P., 2011. Phenolic composition of Merlot and Cabernet–Sauvignon grapes from Bordeaux vineyard for the 2009 vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chemistry 126(4):1991–1999.
  • Pantelić, M.M., Dabić Zagorac, D.C., Davidović, S.M., Todić, S.R., Bešlić, Z.S. and Gašić, U.M., 2016. Identification and quantification of phenolic compounds in berry skin, pulp and seeds in 13 grapevine varieties grown in Serbia. Food Chemistry 211:243–252.
  • Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., Trizoglou, I., Hayes, A.W., Tsatsakis, A.M. and Kouretas, D., 2013. Assessment of polyphenolic content, antioxidant activity, protection against ROS–induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food and Chemical Toxicology 61:60–68.
  • Llobera, A. and Cañellas, J., 2007. Dietary fibre and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry 101:659–666.
  • Rockenbach, S.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, S. and Fett, R., 2006. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 123:174–179.
  • Xu, C., Zhang, Y., Cao, L. and Lu, J., 2010. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry 119:1557–1565. 27. Iacopini, P., Baldi, M., Storchi, P. and Sebastiani, L., 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grapes: content, in vitro antioxidant activity and interactions. Journal of Food Composition and Analysis 21(8):589–598.
  • Butkhupl, L., Chowtivannakul, S., Gaensakoo, R., Prathepha, P. and Samappito, S., 2010. Study of the phenolic composition of Shiraz red grape cultivar (Vitis vinfera L.) cultivated in north–eastern Thailand and its antioxidant and antimicrobial activity. South African J. of Enology and Viticulture 31:89–98.
  • Katalinic, V., Mozina, S.S., Generalic I., Skroza, D., Ljubenkov, I. and Klancnik, A., 2013. Phenolic profile, antioxidant capacity and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. International Journal of Food Properties 16:45–60.
  • Rockenbach, S.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, S. and Fett, R., 2006. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 123:174–179.
  • Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L. and Haroutounian, A., 2012. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. Food Science and Technology 48:316–322.

Determination of phenolic compound contents in different grape tissues of wine grape varieties grown in Çal-Denizli region

Yıl 2019, Cilt: 48 Sayı: 1, 39 - 48, 29.03.2019

Öz

Phenolic compounds provide organoleptic properties to grapes as well as compounds that protect vines against stress factors. These compounds also have antioxidative properties for human health. The amounts of phenolic compounds vary according to grape varieties and tissues. This research was carried out to determine phenolic compound contents in different tissues of wine grape varieties grown in Denizli–Çal province. Seeds, skins, stems and leaves of the Boğazkere, Cabernet Sauvignon, Çal Karası, Merlot and Öküzgözü were investigated in terms of phenolic compound contents and antioxidant capacities. Results show that, Öküzgözü variety has come to the for front in terms of phenolic compounds contents in the tissues. The highest antioxidant capacity (1.133,8) μmol trolox g⁻¹ Dry Weight, (+)–catechin (29.652 mg kg⁻¹ Dry Weight) and rutin (460,7 mg kg⁻¹ Dry Weight) were found in Öküzgözü variety tissues. Another important result obtained from the research is that the stem has a high phenolic compound content such as seed.

Proje Numarası

11B4347003

Kaynakça

  • Lerner, A. and Matthias, T., 2015. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews 14:479–489.
  • Yang, J. and Xiao, Y.Y., 2013. Grape phytochemicals and associated health benefits. Critical Reviews in Food Science and Nutrition 53:1202–1225.
  • Banc, R., Loghin, F., Miere, D., Fetea, F. and Socaciu, C., 2014. Romanian wines quality and authenticity using FT–MIR spectroscopy coupled with multivariate data analysis. Notulae Botanicae Horti Agrobotanici Cluj–Napoca 42:556–564.
  • Gengaihi, S.E.L., Ella, F.M.A., Emad, M.H., Shalaby, E. and Doha, H., 2014. Antioxidant activity of phenolic compounds from different grape wastes. J. of Food Processing Technology 5:296–300.
  • Casazza, A.A., Aliakbarian, B., Mantegna, S., Cravotto, G. and Perego, P., 2010. Extraction of phenolics from Vitis vinifera wastes using non–conventional techniques. Journal of Food Engineering 100:50–55.
  • Tsuda, T., 2012. Dietary anthocyanin–rich plants: Biochemical basis and recent progress in health benefits studies. Molecular Nutrition and Food Research. 56:159–170.
  • Chuang, C.C., Shen, W., Chen, H., Xie, G., Jia, W., Chung, S. and McIntosh, M.K., 2012. Differential effects of grape powder and its extract on glucose tolerance and chronic inflammation in high–fat–fed obese mice. Journal of Agricultural and Food Chemistry 60:12458–12468.
  • Tomé–Carneiro, J., Gonzálvez, M., Larrosa, M., Yáñez–Gascón, M., García–Almagro, F., Ruiz–Ros, J., Tomás–Barberán, F., García–Conesa, M. and Espín, J., 2013. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple–blind, placebo–controlled, one–year clinical trial in patients with stable coronary artery disease. Cardiovascular Drugs Theraphy 27:37–48.
  • Zhou, K. and Raffoul, J.J., 2012. Potential anticancer properties of grape antioxidants. Journal of Oncology 2012:803294.
  • Cramer, G.R., Urano, K., Delrot, S., Pezzotti, M. and Shinozaki, K., 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology 11:163.
  • Mazza, G., Fukumoto, L., Delaquis, P., Girard, B. and Ewert, B., 1999. Anthocyanins, phenolics and color of Cabernet Franc, Merlot and Pinot Noir wines from British Columbia. Journal of Agricultural and Food Chemistry 47:4009–4017.
  • Georgiev, V., Ananga A. and Tsolova, V., 2014. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 6:391–415. 13. Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M. and Molaie, R., 2016. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chemistry 199:847–855.
  • Koźmiński, P., Oliveira–Brett and A.M., 2008. Anthocyanin monitoring in four red grape skin extract varieties using RP–HPLC–ED. Analytical Letters 41:662–675.
  • Downey, M.O., Mazza, M. and Krstic, M.P., 2007. Development of a stable extract for anthocyanins and flavonols from grape skin. American Journal of Enology and Viticulture 58:358–364.
  • Anonim, 2018. Türkiye İstatistik Kurumu Tarım İstatistikleri (TUİK) (http://tuik.gov. tr/preçizelgearama.do?metod=search&aratype=vt) (Erişim Tarihi: 08.11.2018).
  • Waterhouse, A.L., 2005. Determination of total fenolics, in handbook of food analytical chemistry, ed. by Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P. John Wiley & Sons, 463–470, New Jersey.
  • Singleton, V.L. and Rossi, J.J.A., 1965. Colorimetric of totalmphenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144–158.
  • Giusti, M.M. and Wrolstad, R.E., 2001. Characterization and measurement of anthocyanins by UV–visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P., Eds.; John Wiley & Sons: New York, USA, F1.2.1–F1.2.13.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice–Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Biology and Medicine 26:1231–1237.
  • Lorrain, B., Chira, K. and Teissedre, P., 2011. Phenolic composition of Merlot and Cabernet–Sauvignon grapes from Bordeaux vineyard for the 2009 vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chemistry 126(4):1991–1999.
  • Pantelić, M.M., Dabić Zagorac, D.C., Davidović, S.M., Todić, S.R., Bešlić, Z.S. and Gašić, U.M., 2016. Identification and quantification of phenolic compounds in berry skin, pulp and seeds in 13 grapevine varieties grown in Serbia. Food Chemistry 211:243–252.
  • Apostolou, A., Stagos, D., Galitsiou, E., Spyrou, A., Haroutounian, S., Portesis, N., Trizoglou, I., Hayes, A.W., Tsatsakis, A.M. and Kouretas, D., 2013. Assessment of polyphenolic content, antioxidant activity, protection against ROS–induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food and Chemical Toxicology 61:60–68.
  • Llobera, A. and Cañellas, J., 2007. Dietary fibre and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry 101:659–666.
  • Rockenbach, S.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, S. and Fett, R., 2006. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 123:174–179.
  • Xu, C., Zhang, Y., Cao, L. and Lu, J., 2010. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chemistry 119:1557–1565. 27. Iacopini, P., Baldi, M., Storchi, P. and Sebastiani, L., 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grapes: content, in vitro antioxidant activity and interactions. Journal of Food Composition and Analysis 21(8):589–598.
  • Butkhupl, L., Chowtivannakul, S., Gaensakoo, R., Prathepha, P. and Samappito, S., 2010. Study of the phenolic composition of Shiraz red grape cultivar (Vitis vinfera L.) cultivated in north–eastern Thailand and its antioxidant and antimicrobial activity. South African J. of Enology and Viticulture 31:89–98.
  • Katalinic, V., Mozina, S.S., Generalic I., Skroza, D., Ljubenkov, I. and Klancnik, A., 2013. Phenolic profile, antioxidant capacity and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. International Journal of Food Properties 16:45–60.
  • Rockenbach, S.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, S. and Fett, R., 2006. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 123:174–179.
  • Anastasiadi, M., Pratsinis, H., Kletsas, D., Skaltsounis, A.L. and Haroutounian, A., 2012. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. Food Science and Technology 48:316–322.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Hande Tahmaz 0000-0003-4842-6441

Gökhan Söylemezoğlu Bu kişi benim 0000-0002-7959-0407

Proje Numarası 11B4347003
Yayımlanma Tarihi 29 Mart 2019
Gönderilme Tarihi 6 Şubat 2019
Kabul Tarihi 20 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 48 Sayı: 1

Kaynak Göster

APA Tahmaz, H., & Söylemezoğlu, G. (2019). Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe, 48(1), 39-48.
AMA Tahmaz H, Söylemezoğlu G. Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe. Mart 2019;48(1):39-48.
Chicago Tahmaz, Hande, ve Gökhan Söylemezoğlu. “Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin Farklı dokularında Fenolik bileşik içeriklerinin Belirlenmesi”. Bahçe 48, sy. 1 (Mart 2019): 39-48.
EndNote Tahmaz H, Söylemezoğlu G (01 Mart 2019) Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe 48 1 39–48.
IEEE H. Tahmaz ve G. Söylemezoğlu, “Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi”, Bahçe, c. 48, sy. 1, ss. 39–48, 2019.
ISNAD Tahmaz, Hande - Söylemezoğlu, Gökhan. “Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin Farklı dokularında Fenolik bileşik içeriklerinin Belirlenmesi”. Bahçe 48/1 (Mart 2019), 39-48.
JAMA Tahmaz H, Söylemezoğlu G. Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe. 2019;48:39–48.
MLA Tahmaz, Hande ve Gökhan Söylemezoğlu. “Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin Farklı dokularında Fenolik bileşik içeriklerinin Belirlenmesi”. Bahçe, c. 48, sy. 1, 2019, ss. 39-48.
Vancouver Tahmaz H, Söylemezoğlu G. Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe. 2019;48(1):39-48.

BAHÇE
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, Yalova