Araştırma Makalesi
BibTex RIS Kaynak Göster

Edirne Peyzajında Tıbbi Süs Bitkileri

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 192 - 202, 25.03.2025
https://doi.org/10.53471/bahce.1541305

Öz

Tıbbi bitkiler tarihsel olarak çeşitli hastalıkları iyileştirmek için kullanılırken, süs bitkileri güzellikleriyle peyzaj düzenlemelerini zenginleştirir. Hem tıbbi hem de aromatik özelliklere sahip bitkilerin sürdürülebilir üretimi ve kullanımı, bu türler hakkında kentsel topluluk farkındalığının artırılmasıyla sağlanabilir. Bu çalışma, Edirne ve çevresinde bulunan tıbbi değeri olan 15 süs bitkisinin fotoğraflarını, botanik özellikleri, tıbbi kullanımları ve peyzaj uygulamaları hakkında ayrıntılarla birlikte sunarak kültürel farkındalığı artırmayı amaçlamaktadır. Bu bitkiler parklarda, bahçelerde, kurumsal peyzajlarda, alışveriş merkezlerinde ve botanik bahçelerinde araştırılmış ve ortamlarına estetik ve işlevsel değer katmıştır.

Kaynakça

  • Schippmann, U., Leaman, D., Cunningham A.B. 2006. A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In: R.J. Bogers, L.E. Craker and D. Lange (Eds.): Medicinal and Aromatic Plants, pp:75-95.
  • Arslan, N., Baydar, H., Kızıl, S., Karık, Ü., Şekeroğlu, N., Gümüşçü A. 2015. Tıbbi aromatik bitkiler üretiminde değişimler ve yeni arayışlar. TMMOB Ziraat Mühendisleri Odası, Türkiye Ziraat Mühendisliği, 8. Teknik Kongresi, Ankara, s:483-508.
  • Anonim, 2017. Süs bitkileri üreticileri alt birliği, süs bitkileri sektörü ulusal strateji raporu. Tübitak, Tüsside, Türkiye Tohumcular Birliği, Berikan Matbaacılık Yayıncılık, Ankara, 160s.
  • Karagüzel, O., Korkut, A.B., Özkan, B., Çelikel, F., Titiz, S. 2010. Süs bitkileri üretiminin bugünkü durumu, geliştirilme olanakları ve hedefleri. Türkiye Ziraat Mühendisliği 7. Teknik Kongresi, s:539-558.
  • Kazaz, S., Erken, K., Karagüzel, Ö., Alp, Ş., Öztürk, M., Kaya, A.S., Gülbağ, F., Temel, M., Erken, S., Saraç, Y.İ., Elinç, Z., Salman, A., Hocagil, M. 2015. Süs bitkileri üretiminde değişimler ve yeni arayışlar. TMMOB Ziraat Mühendisleri Odası Ziraat Mühendisliği 8. Teknik Kongresi, 12-16 Ocak 2015, Ankara.
  • TÜİK, 2020. Türkiye İstatistik Kurumu (https:// tuikweb.tuik.gov.tr/preçizelge.do?alt_id=1001).
  • Dalgıç, G., Güler, N. 2015. Trakya’nın odunsu bitkileri (ağaç ve çalılar). Sözkesen Matbaacılık Tic. Ltd. Şti, Genel Dağıtım: Pelikan Yayıncılık Ltd. Şti., Ankara, s:15-220.
  • Seçkin, T. 2014. İşlevsel bitki kimyası. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Ankara, s:132-696.
  • Mahdi, J.G., Mahdi, A.J., Mahdi, A.J., Bowen, I.D. 2006. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Proliferation 39:147-155.
  • Piatczak, E., Dybowska, M., Płuciennik, E., Kosla, K., Kolniak Ostek, J., Kalinowska-Lis, U. 2020. Identification and accumulation of phenolic compounds in the leaves and bark of Salix alba (L.) and their biological potential. Biomolecules 10(10):1391.
  • Raskin, I. 1995. Salicylic acid. In: D. Kluwer (Ed.) Plant Hormones, Physiology, Biochemistry and Molecular Biology. Acadian Publication, London.
  • Czerwinska, M.E., Dudek, M.K., Pawlowska, K.A., Prus, A., Ziaja, M., Granica, S. 2018. The influence of procyanidins isolated from small-leaved lime flowers (Tilia cordata Mill.) on human neutrophils. Fitoterapia 127:115-122.
  • Oniszczuk, A., Podgorski, R. 2015. Influence of different extraction methods on the quantification of selected flavonoids and phenolic acids from Tilia cordata inflorescence. Ind. Crop. Prod. 76:509-514.
  • Sroka, Z., Belz, J. 2009. Antioxidant activity of hydrolyzed and non-hydrolyzed extracts of the inflorescence of linden (Tiliae inflorescentia). Adv. Clin. Exp. Med. 18(4):329-335.
  • Matsuda, H., Ninomiya, K., Shimoda, H., Yoshikawa, M. 2002. Hepatoprotective principles from the flowers of Tilia argentea (Linden): structure requirements of tiliroside and mechanisms of action. Bioorg. Med. Chem. 10(3):707-712.
  • Martinez, A.L., Gonzalez-Trujano, M.E., Aguirre-Hernandez, E., Moreno, J., Soto-Hernandez, M., Lopez-Munoz, F.J. 2009. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 56(2):564-571.
  • Herrera-Ruiz, M., Roman-Ramos, R., Zamilpa, A., Tortoriello, J., Jimenez-Ferrer, J.E. 2008. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J. Ethnopharmacol. 118(2):312-317.
  • Cerantola, S., Faggin, S., Annaloro, G., Mainente, F., Filippini, R., Savarino, E.V., Piovan, A., Zoccatelli, G., Giron, M.C. 2021. Influence of Tilia tomentosa Moench extract on mouse small intestine neuromuscular contractility. Nutrients 13(10):3505.
  • Mainente, F., Piovan, A., Zanoni, F., Chignola, R., Cerantola, S., Faggin, S., Giron, M.C., Filippini, R., Seraglia, R., Zoccatelli, G. 2022. Spray-drying microencapsulation of an extract from Tilia tomentosa Moench flowers: physicochemical characterization and in vitro intestinal activity. Plant Foods Hum. Nutr. 77(3):467-473.
  • Martínez-Báez, A.Z., Oranday-Cárdenas, M.A., Verde-Star, M.J., Arévalo-Niño, K. González-González, G.M., Rodríguez-Garza, R.G. 2016. Preliminary study on the antioxidant and antibacterial activity of methanolic extracts of Azadirachta indica, Juglans regia, Tecoma stans, and Magnolia grandiflora. Rev. Mex. Cienc. Farm 47:36-44.
  • Morshedloo, M.R., Quassinti, L., Bramucci, M., Lupidi, G., Maggi, F. 2017. Chemical composition, antioxidant activity and cytotoxicity on tumour cells of the essential oil from flowers of Magnolia grandiflora cultivated in Iran. Nat. Prod. Res. 31:2857-2864.
  • Cho, H.M., Park, E.J., Park, Y.J., Ponce-Zea, J., Doan, T.P., Ryu, B., Oh, W.K. 2022. Sesquiterpene lactone and its unique proaporphine hybrids from Magnolia grandiflora L. and their anti-inflammatory activity. Phytochemistry 200:113211.
  • Cristea, R.M., Sava, C., Căpățână, C., Kanellou, A. 2024. Phytochemical analysis and specific activities of bark and flower extracts from four magnolia. Plant Species. Horticulturae 10(2):141.
  • Simchoni, O., Kislev M.E. 2011. Early finds of Celtis autralis in the southern Levant. Veget. Hist. Archaeohot. 20:267-271.
  • Yılmaz, G., Öztürk, G., Demirci, B. 2021. Türkiye’de doğal olarak yetişen Celtis australis L. vec. tournefortii Lam. (Cannabaceae) meyvelerinin yağ asiti bileşimleri ve antimikrobiyal etkilerinin değerlendirilmesi. Ankara Eczacılık Fakültesi Dergisi 45(3):480-490.
  • Safari, F., Hassanpour H., Alijanpour, A. 2023. Evaluation of hackberry (Celtis australis L.) fruits as sources of bioactive compounds. Sci. Rep. 13(1):12233.
  • Akcan, T., Estevez, M., Serdaroglu, M. 2017. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT (Lebensm.-Wiss. & Technol.) 77:323-331.
  • Simić, M., Kundaković, T., Kovačević, N. 2003. Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia 74:613-616.
  • Elmastas, M., Gülçin, İ., Işıldak, Ö., Küfrevioğlu, Ö.İ., İbaoğlu, K., Aboul-Enein, H.Y. 2006. Radical scavenging activity and antioxidant capacity of bay leaf extracts. Journal of the Iranian Chemical Society 3:258-266.
  • Zeković, Z.P., Lepojević, Ž.D., Mujić, I.O. 2009. Laurel extracts obtained by steam distillation, supercritical fluid and solvent extraction. Journal of Natural Products 2:104-109.
  • Casamassima, D., Palazzo, M., Vizzarri, F., Coppola, R., Costagliola, C., Corino, C., Di Costanzo, A. 2017. Dietary effect of dried bay leaves (Laurus nobilis) meal on some biochemical parameters and on plasma oxidative status in New Zealand white growing rabbit. J. Anim. Physiol. An. N. 101(5):e175-e184.
  • Taban, A., Saharkhiz, M.J., Niakousari, M. 2018. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm 9:12-18.
  • Li, T.S.C. 2002. Medicinal plants. Culture Utilization Phytopharmonolgy. CRC Press, New York, ABD.
  • Orhan, N., Aslan, M., Hoşbaş, S., Deliorman, D. 2009. Antidiabetic effect and antioxidant potential of Rosa canina fruits. Pharmacogn. Mag. 5(20):309-315.
  • Stanila, A., Diaconeasa, Z., Roman I., Sima, N., Maniutiu, D., Roman, A., Sima, R. 2015. Extraction and characterization of phenolic compounds from rose hip (Rosa canina L.) using liquid chromatography coupled with electrospray ionization-mass spectrometry. Not Bot. Hort. Agrobo. 43(2):349-354.
  • Bhave, A., Schulzova, V., Chmelarova, H., Mrnka, L., Hajslova, J. 2017. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug. Anal. 25(3):681-690.
  • Fetni, S., Bertella, N., Ouahab, A., Zapater, J.M.M., Fernandez, S.P.T. 2020. Composition and biological activity of the Algerian plant Rosa canina L. by HPLC-UV-MS. Arabian J. Chem. 13(1):1105-1119.
  • Al-Snafi, A.E. 2020. Bioactive ingredients and pharmacological effects of Nerium oleander. IOSR Journal of Pharmacy 10(9):19-32.
  • Yesilada, E., Takaishi, Y., Fujita, T., Sezik, E. 2000. Anti-ulcerogenic effects of Spartium junceum flowers on in vivo test models in rats. Journal of Ethnopharmacology 70(3):219-226.
  • Nadaf, M., Halimi, M., Mortazavi, M. 2012. Identification of nonpolar chemical composition Spartium junceum flower growing in Iran by GC-MS. Middle-East Journal of Scientific Research 11(2):221-224.
  • Shellie, R., Mondello, L., Marriott, P., Dugo, G. 2002. Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography. A, 970(1-2):225-234.
  • Prusinowska, R., Śmigielski, K.B. 2014. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. HerbaPolonica 60(2):56-66.
  • Smigielski, K., Prusinowska, R., Stobiecka, A., Kunicka-Styczyñska, A., Gruska, R. 2018. Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia). Journal of Essential Oil-Bearing Plants 21(5):1303-1314.
  • Giray, F.H. 2018. An analysis of world lavender oil markets and lessons for Turkey. Journal of Essential Oil-Bearing Plants 21(6):1612-1623.
  • Moghtader, M., Salari, H., Farahmand, A. 2011. Evaluation of the antifungal effects of rosemary oil and comparison with synthetic borneol and fungicide on the growth of Aspergillus flavus. Journal of Ecology and the Natural Environment 3(6):210-214.
  • Fernandes, R.V.D.B., Guimarães, I.C., Ferreira, C.L.R., Botrel, D.A., Borges, S.V., de Souza, A.U. 2017. Microencapsulated rosemary (Rosmarinus officinalis) essential oil as a biopreservative in minas frescal cheese. Journal of Food Processing and Preservation 41(1):e12759.
  • Alamgir, A.N.M. 2018. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Therapeutic use of medicinal plants and their extracts. Phytochemistry and Bioactive Compounds 2:165-309.
  • Cutillas, A.B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. 2018. Rosmarinus officinalis L. essential oils from Spain: composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology 152(6):1282-1292.
  • Eid, A.M., Jaradat, N., Issa, L., Abu-Hasan, A., Salah, N., Dalal, M., Zarour, A. 2022. Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus officinalis) essential oil and its Nanoemulgel. European Journal of Integrative Medicine 55:102175.
  • Hamid, I., Janbaz, K.H. 2017. Investigation of the laxative, spasmolytic and prokinetic properties of aqueous methanol extract of Buxus sempervirens Linn (Buxaceae). Tropical Journal of Pharmaceutical Research 16(8):1865-1872.
  • Jiang, F., Chen, Y., Ren, S., Li, Z., Sun, K., Xing, Y., et al. 2020. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1-AKT/ERK-Snail signaling pathway. Int. J. Oncol. 57:183-196.
  • Wang, Y.L., Wu, W., Su, Y.N., Ai, Z.P., Mou, H.C., Wan, L.S., et al. 2020. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis. Phytomedicine 68:153187.
  • Xiang, Z.N., Su, J.C., Liu, Y.H., Deng, B., Zhao, N., Pan, J., et al. 2021. Structurally diverse alkaloids from Buxus sempervirens with cardioprotective activity. Bioorg. Chem. 109:104753.
  • Kanth, B.K., Lee, K.Y., Lee., G.J. 2014. Antioxidant and radical-scavenging activities of petal extracts of Camellia japonica ecotypes. Horticulture Environment and Biotechnology 55(4):335-341.
  • Kim, E.A., Kim, S.Y., Ye, B.R., Kim, J., Ko, S.C., Lee, W.W., Kim, K.N., Choi, I.W., Jung, W.K., Heo, S.J. 2018. Anti-inflammatory effect of Apo-9′-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. International Immunopharmacology 59:339-346.
  • Jeganathan, B., Punyasiri, P. A.N., Kottawa-Arachchi, J.D., Ranatunga, M.A.B., Abeysinghe, I.S. B., Gunasekare, M.T.K., Bandara, B.M.R. 2016. Genetic variation of flavanols quercetin, myricetin, and kaempferol in the Sri Lankan tea (Camellia sinensis L.) and their health-promoting aspects. International Journal of Food Science, Article ID 6057434, 9pages. http://dx.doi.org/10.1155/2016/6057434.
  • Onodera, K.I., Hanashiro, K., Yasumoto, T. 2006. Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Bioscience, Biotechnology and Biochemistry 70(8):1995-1998.
  • Van Overwalle, G. 2007. Intellectual property protection for medicinal and aromatic plants, Medicinal and Aromatic Plants Chapter 9, Springer, pp:121-128.

Medicinal Ornamental Plants in the Edirne Landscape

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 192 - 202, 25.03.2025
https://doi.org/10.53471/bahce.1541305

Öz

Medicinal plants have historically been used to heal various diseases, while ornamental plants enhance landscaping with their beauty. Sustainable production and use of plants with both medicinal and aromatic properties can be achieved by increasing urban community awareness of these species. This study aims to raise cultural awareness by presenting photographs of 15 ornamental plants with medicinal value found in Edirne and its surroundings, accompanied by details on their botanical characteristics, medicinal uses, and landscaping applications. These plants were researched in parks, gardens, institutional landscapes, shopping centers, and botanical gardens, contributing aesthetic and functional value to their environments.

Kaynakça

  • Schippmann, U., Leaman, D., Cunningham A.B. 2006. A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In: R.J. Bogers, L.E. Craker and D. Lange (Eds.): Medicinal and Aromatic Plants, pp:75-95.
  • Arslan, N., Baydar, H., Kızıl, S., Karık, Ü., Şekeroğlu, N., Gümüşçü A. 2015. Tıbbi aromatik bitkiler üretiminde değişimler ve yeni arayışlar. TMMOB Ziraat Mühendisleri Odası, Türkiye Ziraat Mühendisliği, 8. Teknik Kongresi, Ankara, s:483-508.
  • Anonim, 2017. Süs bitkileri üreticileri alt birliği, süs bitkileri sektörü ulusal strateji raporu. Tübitak, Tüsside, Türkiye Tohumcular Birliği, Berikan Matbaacılık Yayıncılık, Ankara, 160s.
  • Karagüzel, O., Korkut, A.B., Özkan, B., Çelikel, F., Titiz, S. 2010. Süs bitkileri üretiminin bugünkü durumu, geliştirilme olanakları ve hedefleri. Türkiye Ziraat Mühendisliği 7. Teknik Kongresi, s:539-558.
  • Kazaz, S., Erken, K., Karagüzel, Ö., Alp, Ş., Öztürk, M., Kaya, A.S., Gülbağ, F., Temel, M., Erken, S., Saraç, Y.İ., Elinç, Z., Salman, A., Hocagil, M. 2015. Süs bitkileri üretiminde değişimler ve yeni arayışlar. TMMOB Ziraat Mühendisleri Odası Ziraat Mühendisliği 8. Teknik Kongresi, 12-16 Ocak 2015, Ankara.
  • TÜİK, 2020. Türkiye İstatistik Kurumu (https:// tuikweb.tuik.gov.tr/preçizelge.do?alt_id=1001).
  • Dalgıç, G., Güler, N. 2015. Trakya’nın odunsu bitkileri (ağaç ve çalılar). Sözkesen Matbaacılık Tic. Ltd. Şti, Genel Dağıtım: Pelikan Yayıncılık Ltd. Şti., Ankara, s:15-220.
  • Seçkin, T. 2014. İşlevsel bitki kimyası. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti., Ankara, s:132-696.
  • Mahdi, J.G., Mahdi, A.J., Mahdi, A.J., Bowen, I.D. 2006. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Proliferation 39:147-155.
  • Piatczak, E., Dybowska, M., Płuciennik, E., Kosla, K., Kolniak Ostek, J., Kalinowska-Lis, U. 2020. Identification and accumulation of phenolic compounds in the leaves and bark of Salix alba (L.) and their biological potential. Biomolecules 10(10):1391.
  • Raskin, I. 1995. Salicylic acid. In: D. Kluwer (Ed.) Plant Hormones, Physiology, Biochemistry and Molecular Biology. Acadian Publication, London.
  • Czerwinska, M.E., Dudek, M.K., Pawlowska, K.A., Prus, A., Ziaja, M., Granica, S. 2018. The influence of procyanidins isolated from small-leaved lime flowers (Tilia cordata Mill.) on human neutrophils. Fitoterapia 127:115-122.
  • Oniszczuk, A., Podgorski, R. 2015. Influence of different extraction methods on the quantification of selected flavonoids and phenolic acids from Tilia cordata inflorescence. Ind. Crop. Prod. 76:509-514.
  • Sroka, Z., Belz, J. 2009. Antioxidant activity of hydrolyzed and non-hydrolyzed extracts of the inflorescence of linden (Tiliae inflorescentia). Adv. Clin. Exp. Med. 18(4):329-335.
  • Matsuda, H., Ninomiya, K., Shimoda, H., Yoshikawa, M. 2002. Hepatoprotective principles from the flowers of Tilia argentea (Linden): structure requirements of tiliroside and mechanisms of action. Bioorg. Med. Chem. 10(3):707-712.
  • Martinez, A.L., Gonzalez-Trujano, M.E., Aguirre-Hernandez, E., Moreno, J., Soto-Hernandez, M., Lopez-Munoz, F.J. 2009. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 56(2):564-571.
  • Herrera-Ruiz, M., Roman-Ramos, R., Zamilpa, A., Tortoriello, J., Jimenez-Ferrer, J.E. 2008. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J. Ethnopharmacol. 118(2):312-317.
  • Cerantola, S., Faggin, S., Annaloro, G., Mainente, F., Filippini, R., Savarino, E.V., Piovan, A., Zoccatelli, G., Giron, M.C. 2021. Influence of Tilia tomentosa Moench extract on mouse small intestine neuromuscular contractility. Nutrients 13(10):3505.
  • Mainente, F., Piovan, A., Zanoni, F., Chignola, R., Cerantola, S., Faggin, S., Giron, M.C., Filippini, R., Seraglia, R., Zoccatelli, G. 2022. Spray-drying microencapsulation of an extract from Tilia tomentosa Moench flowers: physicochemical characterization and in vitro intestinal activity. Plant Foods Hum. Nutr. 77(3):467-473.
  • Martínez-Báez, A.Z., Oranday-Cárdenas, M.A., Verde-Star, M.J., Arévalo-Niño, K. González-González, G.M., Rodríguez-Garza, R.G. 2016. Preliminary study on the antioxidant and antibacterial activity of methanolic extracts of Azadirachta indica, Juglans regia, Tecoma stans, and Magnolia grandiflora. Rev. Mex. Cienc. Farm 47:36-44.
  • Morshedloo, M.R., Quassinti, L., Bramucci, M., Lupidi, G., Maggi, F. 2017. Chemical composition, antioxidant activity and cytotoxicity on tumour cells of the essential oil from flowers of Magnolia grandiflora cultivated in Iran. Nat. Prod. Res. 31:2857-2864.
  • Cho, H.M., Park, E.J., Park, Y.J., Ponce-Zea, J., Doan, T.P., Ryu, B., Oh, W.K. 2022. Sesquiterpene lactone and its unique proaporphine hybrids from Magnolia grandiflora L. and their anti-inflammatory activity. Phytochemistry 200:113211.
  • Cristea, R.M., Sava, C., Căpățână, C., Kanellou, A. 2024. Phytochemical analysis and specific activities of bark and flower extracts from four magnolia. Plant Species. Horticulturae 10(2):141.
  • Simchoni, O., Kislev M.E. 2011. Early finds of Celtis autralis in the southern Levant. Veget. Hist. Archaeohot. 20:267-271.
  • Yılmaz, G., Öztürk, G., Demirci, B. 2021. Türkiye’de doğal olarak yetişen Celtis australis L. vec. tournefortii Lam. (Cannabaceae) meyvelerinin yağ asiti bileşimleri ve antimikrobiyal etkilerinin değerlendirilmesi. Ankara Eczacılık Fakültesi Dergisi 45(3):480-490.
  • Safari, F., Hassanpour H., Alijanpour, A. 2023. Evaluation of hackberry (Celtis australis L.) fruits as sources of bioactive compounds. Sci. Rep. 13(1):12233.
  • Akcan, T., Estevez, M., Serdaroglu, M. 2017. Antioxidant protection of cooked meatballs during frozen storage by whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT (Lebensm.-Wiss. & Technol.) 77:323-331.
  • Simić, M., Kundaković, T., Kovačević, N. 2003. Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia 74:613-616.
  • Elmastas, M., Gülçin, İ., Işıldak, Ö., Küfrevioğlu, Ö.İ., İbaoğlu, K., Aboul-Enein, H.Y. 2006. Radical scavenging activity and antioxidant capacity of bay leaf extracts. Journal of the Iranian Chemical Society 3:258-266.
  • Zeković, Z.P., Lepojević, Ž.D., Mujić, I.O. 2009. Laurel extracts obtained by steam distillation, supercritical fluid and solvent extraction. Journal of Natural Products 2:104-109.
  • Casamassima, D., Palazzo, M., Vizzarri, F., Coppola, R., Costagliola, C., Corino, C., Di Costanzo, A. 2017. Dietary effect of dried bay leaves (Laurus nobilis) meal on some biochemical parameters and on plasma oxidative status in New Zealand white growing rabbit. J. Anim. Physiol. An. N. 101(5):e175-e184.
  • Taban, A., Saharkhiz, M.J., Niakousari, M. 2018. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm 9:12-18.
  • Li, T.S.C. 2002. Medicinal plants. Culture Utilization Phytopharmonolgy. CRC Press, New York, ABD.
  • Orhan, N., Aslan, M., Hoşbaş, S., Deliorman, D. 2009. Antidiabetic effect and antioxidant potential of Rosa canina fruits. Pharmacogn. Mag. 5(20):309-315.
  • Stanila, A., Diaconeasa, Z., Roman I., Sima, N., Maniutiu, D., Roman, A., Sima, R. 2015. Extraction and characterization of phenolic compounds from rose hip (Rosa canina L.) using liquid chromatography coupled with electrospray ionization-mass spectrometry. Not Bot. Hort. Agrobo. 43(2):349-354.
  • Bhave, A., Schulzova, V., Chmelarova, H., Mrnka, L., Hajslova, J. 2017. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug. Anal. 25(3):681-690.
  • Fetni, S., Bertella, N., Ouahab, A., Zapater, J.M.M., Fernandez, S.P.T. 2020. Composition and biological activity of the Algerian plant Rosa canina L. by HPLC-UV-MS. Arabian J. Chem. 13(1):1105-1119.
  • Al-Snafi, A.E. 2020. Bioactive ingredients and pharmacological effects of Nerium oleander. IOSR Journal of Pharmacy 10(9):19-32.
  • Yesilada, E., Takaishi, Y., Fujita, T., Sezik, E. 2000. Anti-ulcerogenic effects of Spartium junceum flowers on in vivo test models in rats. Journal of Ethnopharmacology 70(3):219-226.
  • Nadaf, M., Halimi, M., Mortazavi, M. 2012. Identification of nonpolar chemical composition Spartium junceum flower growing in Iran by GC-MS. Middle-East Journal of Scientific Research 11(2):221-224.
  • Shellie, R., Mondello, L., Marriott, P., Dugo, G. 2002. Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography. A, 970(1-2):225-234.
  • Prusinowska, R., Śmigielski, K.B. 2014. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. HerbaPolonica 60(2):56-66.
  • Smigielski, K., Prusinowska, R., Stobiecka, A., Kunicka-Styczyñska, A., Gruska, R. 2018. Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia). Journal of Essential Oil-Bearing Plants 21(5):1303-1314.
  • Giray, F.H. 2018. An analysis of world lavender oil markets and lessons for Turkey. Journal of Essential Oil-Bearing Plants 21(6):1612-1623.
  • Moghtader, M., Salari, H., Farahmand, A. 2011. Evaluation of the antifungal effects of rosemary oil and comparison with synthetic borneol and fungicide on the growth of Aspergillus flavus. Journal of Ecology and the Natural Environment 3(6):210-214.
  • Fernandes, R.V.D.B., Guimarães, I.C., Ferreira, C.L.R., Botrel, D.A., Borges, S.V., de Souza, A.U. 2017. Microencapsulated rosemary (Rosmarinus officinalis) essential oil as a biopreservative in minas frescal cheese. Journal of Food Processing and Preservation 41(1):e12759.
  • Alamgir, A.N.M. 2018. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Therapeutic use of medicinal plants and their extracts. Phytochemistry and Bioactive Compounds 2:165-309.
  • Cutillas, A.B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J. 2018. Rosmarinus officinalis L. essential oils from Spain: composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology 152(6):1282-1292.
  • Eid, A.M., Jaradat, N., Issa, L., Abu-Hasan, A., Salah, N., Dalal, M., Zarour, A. 2022. Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus officinalis) essential oil and its Nanoemulgel. European Journal of Integrative Medicine 55:102175.
  • Hamid, I., Janbaz, K.H. 2017. Investigation of the laxative, spasmolytic and prokinetic properties of aqueous methanol extract of Buxus sempervirens Linn (Buxaceae). Tropical Journal of Pharmaceutical Research 16(8):1865-1872.
  • Jiang, F., Chen, Y., Ren, S., Li, Z., Sun, K., Xing, Y., et al. 2020. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1-AKT/ERK-Snail signaling pathway. Int. J. Oncol. 57:183-196.
  • Wang, Y.L., Wu, W., Su, Y.N., Ai, Z.P., Mou, H.C., Wan, L.S., et al. 2020. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis. Phytomedicine 68:153187.
  • Xiang, Z.N., Su, J.C., Liu, Y.H., Deng, B., Zhao, N., Pan, J., et al. 2021. Structurally diverse alkaloids from Buxus sempervirens with cardioprotective activity. Bioorg. Chem. 109:104753.
  • Kanth, B.K., Lee, K.Y., Lee., G.J. 2014. Antioxidant and radical-scavenging activities of petal extracts of Camellia japonica ecotypes. Horticulture Environment and Biotechnology 55(4):335-341.
  • Kim, E.A., Kim, S.Y., Ye, B.R., Kim, J., Ko, S.C., Lee, W.W., Kim, K.N., Choi, I.W., Jung, W.K., Heo, S.J. 2018. Anti-inflammatory effect of Apo-9′-fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. International Immunopharmacology 59:339-346.
  • Jeganathan, B., Punyasiri, P. A.N., Kottawa-Arachchi, J.D., Ranatunga, M.A.B., Abeysinghe, I.S. B., Gunasekare, M.T.K., Bandara, B.M.R. 2016. Genetic variation of flavanols quercetin, myricetin, and kaempferol in the Sri Lankan tea (Camellia sinensis L.) and their health-promoting aspects. International Journal of Food Science, Article ID 6057434, 9pages. http://dx.doi.org/10.1155/2016/6057434.
  • Onodera, K.I., Hanashiro, K., Yasumoto, T. 2006. Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Bioscience, Biotechnology and Biochemistry 70(8):1995-1998.
  • Van Overwalle, G. 2007. Intellectual property protection for medicinal and aromatic plants, Medicinal and Aromatic Plants Chapter 9, Springer, pp:121-128.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Makaleler
Yazarlar

Gulden Yılmaz Con 0000-0002-9610-5311

Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 31 Ağustos 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: Özel Sayı 1

Kaynak Göster

APA Yılmaz Con, G. (2025). Edirne Peyzajında Tıbbi Süs Bitkileri. Bahçe, 54(Özel Sayı 1), 192-202. https://doi.org/10.53471/bahce.1541305
AMA Yılmaz Con G. Edirne Peyzajında Tıbbi Süs Bitkileri. Bahçe. Mart 2025;54(Özel Sayı 1):192-202. doi:10.53471/bahce.1541305
Chicago Yılmaz Con, Gulden. “Edirne Peyzajında Tıbbi Süs Bitkileri”. Bahçe 54, sy. Özel Sayı 1 (Mart 2025): 192-202. https://doi.org/10.53471/bahce.1541305.
EndNote Yılmaz Con G (01 Mart 2025) Edirne Peyzajında Tıbbi Süs Bitkileri. Bahçe 54 Özel Sayı 1 192–202.
IEEE G. Yılmaz Con, “Edirne Peyzajında Tıbbi Süs Bitkileri”, Bahçe, c. 54, sy. Özel Sayı 1, ss. 192–202, 2025, doi: 10.53471/bahce.1541305.
ISNAD Yılmaz Con, Gulden. “Edirne Peyzajında Tıbbi Süs Bitkileri”. Bahçe 54/Özel Sayı 1 (Mart 2025), 192-202. https://doi.org/10.53471/bahce.1541305.
JAMA Yılmaz Con G. Edirne Peyzajında Tıbbi Süs Bitkileri. Bahçe. 2025;54:192–202.
MLA Yılmaz Con, Gulden. “Edirne Peyzajında Tıbbi Süs Bitkileri”. Bahçe, c. 54, sy. Özel Sayı 1, 2025, ss. 192-0, doi:10.53471/bahce.1541305.
Vancouver Yılmaz Con G. Edirne Peyzajında Tıbbi Süs Bitkileri. Bahçe. 2025;54(Özel Sayı 1):192-20.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram