Derleme
BibTex RIS Kaynak Göster

Potential of Ruderal Plant Species for Urban Vegetation Design

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 520 - 530, 25.03.2025
https://doi.org/10.53471/bahce.1548401

Öz

Ruderal plants are plant species that have emerged in natural ecosystems because of anthropogenic impacts. They are frequently found in vacant lots, roadsides, and construction sites. These plants, which have been considered harmful and undesirable for many years, are now gaining attention as environmental sustainability and the conservation of natural resources have gained importance. Ruderal species possess biologically adaptive traits that persist in urban habitats, including rapid pollination, aesthetic appeal, and resistance to water stress. Research on urban vegetation has shown that the distribution of ruderal plants is related to two key parameters: soil water content and the frequency and intensity of human intervention. These parameters play an important role in structuring and maintaining ecosystems in urban areas. The water content of soil directly affects the growth and development of plants, whereas the intensity of human intervention determines the pressure on vegetation. In this context, the distribution and diversity of ruderal plants in urban areas are important factors to be considered in urban landscape planning. Furthermore, these surveys provide basic information to understand the impacts on the sustainability and diversity of urban vegetation. This information can be used to guide decision makers in the design and management of green spaces in urban areas. This study focused on the potential of ruderal plant species for use in vegetative design in urban landscapes, examining their possible advantages and disadvantages in terms of biodiversity in urban areas and conveying their potential application areas.

Kaynakça

  • Ranđelović, D., Jakovljević, K., Šinžar-Sekulić, J., Kuzmič, F., Šilc, U. 2024. Recognizing the role of ruderal species in restoration of degraded lands. Sci. Total Environ. 938.
  • Pandit, R. et al. 2020. A framework to evaluate land degradation and restoration responses for improved planning and decision-making. Ecosyst. People 16, 1-18.
  • Chiuffo, M.C., Cock, M.C., Prina, A.O., Hierro, J.L. 2018. Response of native and non-native ruderals to natural and human disturbance. Biol. Invasions 20, 2915-2925.
  • Winkler, J. et al. 2021. Trends in the succession of synanthropic vegetation on a reclaimed landfill in Poland. Anthropocene 35.
  • Pietrzykowski, M. 2019. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. X 3, 100012.
  • Poniatowski, D., Stuhldreher, G., Helbing, F., Hamer, U., Fartmann, T. 2020. Restoration of calcareous grasslands: The early successional stage promotes biodiversity. Ecol. Eng. 151, 105858.
  • Gordon, D.R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 8, 975-989.
  • Burylo, M., Rey, F., Mathys, N., Dutoit, T. 2012. Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf. Process. Landforms 37, 1463-1470.
  • Bochet, E., García-Fayos, P. 2015. Identifying plant traits: A key aspect for species selection in restoration of eroded roadsides in semiarid environments. Ecol. Eng. 83, 444-451.
  • Fischer, L.K., Von der Lippe, M., Kowarik, I. 2013. Urban grassland restoration: Which plant traits make desired species successful colonizers? Appl. Veg. Sci. 16, 272-285.
  • Kou, M., Garcia-Fayos, P., Hu, S., Jiao, J. 2016. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chrono sequence approach. For. Ecol. Manage. 375, 146-158.
  • Guo, P. et al. 2018. Response of ruderal species diversity to an urban environment: Implications for conservation and management. Int. J. Environ. Res. Public Health 15.
  • Zhang, M., Song, K., Da, L. 2020. The diversity distribution pattern of ruderal community under the rapid urbanization in hangzhou, east China. Diversity 12.
  • Thompson, K., McCarthy, M.A. 2008. Traits of British alien and native urban plants. J. Ecol. 96, 853-859.
  • Riley, C.B., Perry, K.I., Ard, K., Gardiner, M.M. 2018. Asset or liability? Ecological and sociological tradeoffs of urban spontaneous vegetation on vacant land in shrinking cities. Sustain. 10, 1-19.
  • Kennedy, C. 2022. Ruderal Resilience: Applying a Ruderal Lens to Advance Multispecies Urbanism and Social-Ecological Systems Theory. Front. Built Environ. 8, 1-20.
  • Robinson, S.L., Lundholm, J.T. 2012. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosyst. 15, 545-557.
  • Mukherjee, M., Takara, K. 2018. Urban green space as a countermeasure to increasing urban risk and the UGS-3CC resilience framework. Int. J. Disaster Risk Reduct. 28, 854-861.
  • Petaloudi, L.M., Ganatsas, P., Tsakaldimi, M. 2022. Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. Sustain. 14.
  • Honek, A., Martinkova, Z., Saska, P., Koprdova, S. 2009. Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agric. Ecosyst. Environ. 134, 126-135.
  • Liu, J. et al. 2022. Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist). Plants 11.
  • Wesse, C., Welk, E., Hurka, H., Neuffer, B. 2021. Geographical pattern of genetic diversity in Capsella bursa-pastoris (Brassicaceae)-A global perspective. Ecol. Evol. 11, 199-213.
  • Polechońska, M. et al. 2013. Evaluation of the bioindicator suitability of Polygonum aviculare in urban areas. Ecol. Indic. 24, 552-556.
  • Salinitro, M. et al. 2019. Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. And Poa annua L. Molecules 24.
  • Stoetzer, B. 2018. Ruderal ecologies: Rethinking nature, migration, and the urban landscape in Berlin. Cult. Anthropol. 33, 295-323.
  • Wu, B., Zhang, H., Jiang, K., Zhou, J., Wang, C. 2019. Erigeron canadensis affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecol. Res. 34, 535-547.
  • Ali, A. Ben, Armijo, M., Shukla, M. 2024. Irrigation of Atriplex species with highly saline produced water for rangelands improvement in southeastern New Mexico. Rangelands doi:10.1016/j.rala.2024.04.001.
  • Salgueiro, P.A., Prach, K., Branquinho, C., Mira, A. 2020. Enhancing biodiversity and ecosystem services in quarry restoration-challenges, strategies and practice. Restor. Ecol. 28, 655-660.
  • Han, T.S. et al. 2015. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid shepherd’s purse (Capsella bursa-pastoris). Mol. Plant 8, 427-438.
  • Pywell, R.F. et al. 2003. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 40, 65-77.
  • Shamsutdinov, N., Shagaipov, M., Sanzheev, V. 2020. Ecological restoration of degraded pasture lands in the Circum-Caspian Sea semi-desert. E3S Web Conf. 222, 1-6.
  • Kachout, S.S. et al. 2010. The effect of salinity on the growth of the halophyte Atriplex Hortensis (Chenopodiaceae). Appl. Ecol. Environ. Res. 7, 319-332.
  • Li, J., Mao, Y., Ouyang, J., Zheng, S.A. 2022. Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. Int. J. Environ. Res. Public Health 19.
  • Massoukou Pamba, R., Poirier, V., Nguema Ndoutoumou, P., Epule, T.E. 2023. How Can Plants Help Restore Degraded Tropical Soils? Land 12, 1-18.
  • Onyeaka, H. et al. 2021. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 1.
  • Prajapati, S.K., Choudhary. S., Kumar. V., Dayal. P., Srivastava, R., Gairola. A., Borate R.B. 2023. Carbon Sequestration: A Key Strategy for Climate Change Mitigation towards a Sustainable Future. Climate Change 2, 1-14.
  • Wang’ombe, G. 2024. The Impact of Urban Green Spaces on Community Health and Well-being. Int. J. Arts, Recreat. Sport. 3, 14-25.
  • Yalçınalp, E., Meral, A. 2019. Ruderal Plants in Urban and Sub-Urban Walls and Roofs. Ege Üniversitesi Ziraat Fakültesi Dergisi 56, 205-212.
  • Gilbert, O.L. 1991. The Ecology of Urban Habitats. Chapman & Hall. London. p.369.
  • Zinco, 2024. The High Line Park in New York: The “longest green roof in the World. (https:// zinco-usa.com/high-line-park-new-york-%e2%80 %9clongest-green-roof-world%e2%80%9d) (Erişim Tarihi: Mayıs 2024).
  • Lopate, P. 2011. Above Grade: On the High Line. (https://placesjournal.org/article/above-grade-on-the-high-line/?cn-reloaded=1&cn-reloaded=1), (Erişim Tarihi: Mayıs 2024).
  • Patowary, K. 2015. Abandoned Tempelhof airport now Berlin’s largest park (https://www.amusing planet.com/2015/06/abandoned-tempelhof-airport -now-berlins.html) (Erişim Tarihi: Nisan 2024).
  • Queen Elizabeth Olympic Park (https://www. queenelizabetholympicpark.co.uk/) (Erişim Tarihi: Mayıs 2024).
  • Open Spaces in London: Queen Elizabeth Olympic Park (https://www.queenelizabeth olympicpark.co.uk/about-us/how-we-work/open-spaces-london-queen-elizabeth-olympic-park) (Erişim Tarihi: Mayıs 2024).
  • Anonim 2024. https://www.hargreaves.com/work /queen-elizabeth-olympic-park/ (Erişim Tarihi: Mayıs 2024).
  • Power Plants Phytoremediation 2015-2019. (https://powerplantsphytoremediation.com/park-de-ceuvel) (Erişim Tarihi: Nisan 2024).
  • Saint-Jean P.C. 2016. Fondation Cartier: un «jardin nature» en plein Paris (https://www. lefigaro.fr/jardin/2016/09/23/30008-20160923art fig00033-fondation-cartier-un-jardin-nature-en-plein-paris.php) (Erişim Tarihi: Mayıs 2024).
  • Nowacka-Rejzner, U. 2019. Places for Green Areas in the Spaces of the Modern City. IOP Conf. Ser. Mater. Sci. Eng. 471.
  • De Bastille à Vincennes par la coulée verte 2021. (https://www.paris.fr/pages/de-bastille-a-vincen nes-par-la-coulee-verte-4932) (Erişim Tarihi: Mayıs 2024).

Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli

Yıl 2025, Cilt: 54 Sayı: Özel Sayı 1, 520 - 530, 25.03.2025
https://doi.org/10.53471/bahce.1548401

Öz

Ruderal bitkiler, doğal ekosistemlerde antropojenik etkiler sonucunda ortaya çıkan bitki türleridir; boş araziler, yol kenarları ve inşaat alanları gibi bölgelerde sıklıkla görülürler. Uzun yıllar zararlı ve istenmeyen olarak kabul edilen bu bitkiler, günümüzde çevresel sürdürülebilirlik ve doğal kaynakların korunması konularının önem kazanmasıyla ilgi görmeye başlamıştır. Ruderal türler, kentsel habitatlarda varlıklarını sürdürebilmek için biyolojik olarak uyumlu özelliklere sahiptir; bu özellikler arasında hızlı tozlaşma, estetik çekicilik ve su stresine dayanıklılık öne çıkmaktadır. Kentsel bitki örtüsü üzerine yapılan araştırmalar, ruderal bitkilerin dağılımının iki temel parametreyle ilişkili olduğunu göstermiştir: toprağın su içeriği ve insan müdahalesinin sıklığı ve yoğunluğu. Bu parametreler, kentsel alanlardaki ekosistemlerin yapılandırılması ve korunması açısından önemli rollere sahiptir. Toprağın su içeriği, bitkilerin büyüme ve gelişmesini doğrudan etkilerken, insan müdahalesinin yoğunluğu ise bitki örtüsü üzerindeki baskıyı belirler. Bu bağlamda, ruderal bitkilerin kentsel alanlardaki dağılımı ve çeşitliliği, kentsel peyzaj planlamasında dikkate alınması gereken önemli bir faktördür. Ayrıca, bu araştırmalar, kentsel bitki örtüsünün sürdürülebilirliği ve çeşitliliği üzerindeki etkilerini anlamak için temel bilgi sağlar. Bu bilgiler, kentsel alanlardaki yeşil alanların tasarımı ve yönetimi konusunda karar vericilere rehberlik etmek için kullanılabilir. Bu çalışma, ruderal bitki türlerinin kentsel peyzajlarda bitkisel tasarımda kullanılma potansiyellerine odaklanarak, kentsel alanlarda biyoçeşitlilik açısından olası avantajlarını ve dezavantajlarını incelemekte ve potansiyel uygulama alanlarını aktarmaktadır.

Kaynakça

  • Ranđelović, D., Jakovljević, K., Šinžar-Sekulić, J., Kuzmič, F., Šilc, U. 2024. Recognizing the role of ruderal species in restoration of degraded lands. Sci. Total Environ. 938.
  • Pandit, R. et al. 2020. A framework to evaluate land degradation and restoration responses for improved planning and decision-making. Ecosyst. People 16, 1-18.
  • Chiuffo, M.C., Cock, M.C., Prina, A.O., Hierro, J.L. 2018. Response of native and non-native ruderals to natural and human disturbance. Biol. Invasions 20, 2915-2925.
  • Winkler, J. et al. 2021. Trends in the succession of synanthropic vegetation on a reclaimed landfill in Poland. Anthropocene 35.
  • Pietrzykowski, M. 2019. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. X 3, 100012.
  • Poniatowski, D., Stuhldreher, G., Helbing, F., Hamer, U., Fartmann, T. 2020. Restoration of calcareous grasslands: The early successional stage promotes biodiversity. Ecol. Eng. 151, 105858.
  • Gordon, D.R. 1998. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 8, 975-989.
  • Burylo, M., Rey, F., Mathys, N., Dutoit, T. 2012. Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surf. Process. Landforms 37, 1463-1470.
  • Bochet, E., García-Fayos, P. 2015. Identifying plant traits: A key aspect for species selection in restoration of eroded roadsides in semiarid environments. Ecol. Eng. 83, 444-451.
  • Fischer, L.K., Von der Lippe, M., Kowarik, I. 2013. Urban grassland restoration: Which plant traits make desired species successful colonizers? Appl. Veg. Sci. 16, 272-285.
  • Kou, M., Garcia-Fayos, P., Hu, S., Jiao, J. 2016. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chrono sequence approach. For. Ecol. Manage. 375, 146-158.
  • Guo, P. et al. 2018. Response of ruderal species diversity to an urban environment: Implications for conservation and management. Int. J. Environ. Res. Public Health 15.
  • Zhang, M., Song, K., Da, L. 2020. The diversity distribution pattern of ruderal community under the rapid urbanization in hangzhou, east China. Diversity 12.
  • Thompson, K., McCarthy, M.A. 2008. Traits of British alien and native urban plants. J. Ecol. 96, 853-859.
  • Riley, C.B., Perry, K.I., Ard, K., Gardiner, M.M. 2018. Asset or liability? Ecological and sociological tradeoffs of urban spontaneous vegetation on vacant land in shrinking cities. Sustain. 10, 1-19.
  • Kennedy, C. 2022. Ruderal Resilience: Applying a Ruderal Lens to Advance Multispecies Urbanism and Social-Ecological Systems Theory. Front. Built Environ. 8, 1-20.
  • Robinson, S.L., Lundholm, J.T. 2012. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosyst. 15, 545-557.
  • Mukherjee, M., Takara, K. 2018. Urban green space as a countermeasure to increasing urban risk and the UGS-3CC resilience framework. Int. J. Disaster Risk Reduct. 28, 854-861.
  • Petaloudi, L.M., Ganatsas, P., Tsakaldimi, M. 2022. Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. Sustain. 14.
  • Honek, A., Martinkova, Z., Saska, P., Koprdova, S. 2009. Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agric. Ecosyst. Environ. 134, 126-135.
  • Liu, J. et al. 2022. Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist). Plants 11.
  • Wesse, C., Welk, E., Hurka, H., Neuffer, B. 2021. Geographical pattern of genetic diversity in Capsella bursa-pastoris (Brassicaceae)-A global perspective. Ecol. Evol. 11, 199-213.
  • Polechońska, M. et al. 2013. Evaluation of the bioindicator suitability of Polygonum aviculare in urban areas. Ecol. Indic. 24, 552-556.
  • Salinitro, M. et al. 2019. Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. And Poa annua L. Molecules 24.
  • Stoetzer, B. 2018. Ruderal ecologies: Rethinking nature, migration, and the urban landscape in Berlin. Cult. Anthropol. 33, 295-323.
  • Wu, B., Zhang, H., Jiang, K., Zhou, J., Wang, C. 2019. Erigeron canadensis affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecol. Res. 34, 535-547.
  • Ali, A. Ben, Armijo, M., Shukla, M. 2024. Irrigation of Atriplex species with highly saline produced water for rangelands improvement in southeastern New Mexico. Rangelands doi:10.1016/j.rala.2024.04.001.
  • Salgueiro, P.A., Prach, K., Branquinho, C., Mira, A. 2020. Enhancing biodiversity and ecosystem services in quarry restoration-challenges, strategies and practice. Restor. Ecol. 28, 655-660.
  • Han, T.S. et al. 2015. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid shepherd’s purse (Capsella bursa-pastoris). Mol. Plant 8, 427-438.
  • Pywell, R.F. et al. 2003. Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. 40, 65-77.
  • Shamsutdinov, N., Shagaipov, M., Sanzheev, V. 2020. Ecological restoration of degraded pasture lands in the Circum-Caspian Sea semi-desert. E3S Web Conf. 222, 1-6.
  • Kachout, S.S. et al. 2010. The effect of salinity on the growth of the halophyte Atriplex Hortensis (Chenopodiaceae). Appl. Ecol. Environ. Res. 7, 319-332.
  • Li, J., Mao, Y., Ouyang, J., Zheng, S.A. 2022. Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. Int. J. Environ. Res. Public Health 19.
  • Massoukou Pamba, R., Poirier, V., Nguema Ndoutoumou, P., Epule, T.E. 2023. How Can Plants Help Restore Degraded Tropical Soils? Land 12, 1-18.
  • Onyeaka, H. et al. 2021. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 1.
  • Prajapati, S.K., Choudhary. S., Kumar. V., Dayal. P., Srivastava, R., Gairola. A., Borate R.B. 2023. Carbon Sequestration: A Key Strategy for Climate Change Mitigation towards a Sustainable Future. Climate Change 2, 1-14.
  • Wang’ombe, G. 2024. The Impact of Urban Green Spaces on Community Health and Well-being. Int. J. Arts, Recreat. Sport. 3, 14-25.
  • Yalçınalp, E., Meral, A. 2019. Ruderal Plants in Urban and Sub-Urban Walls and Roofs. Ege Üniversitesi Ziraat Fakültesi Dergisi 56, 205-212.
  • Gilbert, O.L. 1991. The Ecology of Urban Habitats. Chapman & Hall. London. p.369.
  • Zinco, 2024. The High Line Park in New York: The “longest green roof in the World. (https:// zinco-usa.com/high-line-park-new-york-%e2%80 %9clongest-green-roof-world%e2%80%9d) (Erişim Tarihi: Mayıs 2024).
  • Lopate, P. 2011. Above Grade: On the High Line. (https://placesjournal.org/article/above-grade-on-the-high-line/?cn-reloaded=1&cn-reloaded=1), (Erişim Tarihi: Mayıs 2024).
  • Patowary, K. 2015. Abandoned Tempelhof airport now Berlin’s largest park (https://www.amusing planet.com/2015/06/abandoned-tempelhof-airport -now-berlins.html) (Erişim Tarihi: Nisan 2024).
  • Queen Elizabeth Olympic Park (https://www. queenelizabetholympicpark.co.uk/) (Erişim Tarihi: Mayıs 2024).
  • Open Spaces in London: Queen Elizabeth Olympic Park (https://www.queenelizabeth olympicpark.co.uk/about-us/how-we-work/open-spaces-london-queen-elizabeth-olympic-park) (Erişim Tarihi: Mayıs 2024).
  • Anonim 2024. https://www.hargreaves.com/work /queen-elizabeth-olympic-park/ (Erişim Tarihi: Mayıs 2024).
  • Power Plants Phytoremediation 2015-2019. (https://powerplantsphytoremediation.com/park-de-ceuvel) (Erişim Tarihi: Nisan 2024).
  • Saint-Jean P.C. 2016. Fondation Cartier: un «jardin nature» en plein Paris (https://www. lefigaro.fr/jardin/2016/09/23/30008-20160923art fig00033-fondation-cartier-un-jardin-nature-en-plein-paris.php) (Erişim Tarihi: Mayıs 2024).
  • Nowacka-Rejzner, U. 2019. Places for Green Areas in the Spaces of the Modern City. IOP Conf. Ser. Mater. Sci. Eng. 471.
  • De Bastille à Vincennes par la coulée verte 2021. (https://www.paris.fr/pages/de-bastille-a-vincen nes-par-la-coulee-verte-4932) (Erişim Tarihi: Mayıs 2024).
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Derlemeler
Yazarlar

Tuba Gül Doğan 0000-0003-2114-2334

Engin Eroğlu 0000-0002-1777-8375

Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 11 Eylül 2024
Kabul Tarihi 27 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: Özel Sayı 1

Kaynak Göster

APA Doğan, T. G., & Eroğlu, E. (2025). Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli. Bahçe, 54(Özel Sayı 1), 520-530. https://doi.org/10.53471/bahce.1548401
AMA Doğan TG, Eroğlu E. Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli. Bahçe. Mart 2025;54(Özel Sayı 1):520-530. doi:10.53471/bahce.1548401
Chicago Doğan, Tuba Gül, ve Engin Eroğlu. “Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli”. Bahçe 54, sy. Özel Sayı 1 (Mart 2025): 520-30. https://doi.org/10.53471/bahce.1548401.
EndNote Doğan TG, Eroğlu E (01 Mart 2025) Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli. Bahçe 54 Özel Sayı 1 520–530.
IEEE T. G. Doğan ve E. Eroğlu, “Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli”, Bahçe, c. 54, sy. Özel Sayı 1, ss. 520–530, 2025, doi: 10.53471/bahce.1548401.
ISNAD Doğan, Tuba Gül - Eroğlu, Engin. “Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli”. Bahçe 54/Özel Sayı 1 (Mart 2025), 520-530. https://doi.org/10.53471/bahce.1548401.
JAMA Doğan TG, Eroğlu E. Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli. Bahçe. 2025;54:520–530.
MLA Doğan, Tuba Gül ve Engin Eroğlu. “Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli”. Bahçe, c. 54, sy. Özel Sayı 1, 2025, ss. 520-3, doi:10.53471/bahce.1548401.
Vancouver Doğan TG, Eroğlu E. Ruderal Bitki Türlerinin Kentsel Bitkisel Tasarımda Kullanım Potansiyeli. Bahçe. 2025;54(Özel Sayı 1):520-3.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram