Araştırma Makalesi
BibTex RIS Kaynak Göster

Ratlarda Nikel Sülfatın Genotoksisitesine Karşı Likopenin Koruyucu Etkisi

Yıl 2022, Cilt: 11 Sayı: Supplement 1 - Veteriner Farmakoloji Kongresi Özel Sayısı, 1 - 6, 01.12.2022
https://doi.org/10.53424/balikesirsbd.1144724

Öz

Amaç: Endüstrilerde geniş kullanım yeri olan nikelin teratojenik, kanserojenik, immünotoksik ve genotoksik etkileri vardır. Bu çalışmada, nikel sülfatın sebep olduğu genotoksisiteye karşı antioksidan özelliğe sahip likopenin koruyucu etkileri araştırılmıştır. Gereç ve Yöntem: Çalışmada toplam 24 adet rat (Wistar albino) dört gruba ayrılmıştır. Grup I (kontrol) günlük olarak serum fizyolojik intraperitonal (i.p.) ve mısır yağı oral gavajla (0.5 ml); Grup II nikel sülfat (20 mg/kg, i.p.) serum fizyolojik içerisinde çözdürülerek; Grup III likopen mısır yağı (0.5 ml) süspansiyon haline getirilerek 20 mg/kg dozlarında oral gavajla; Grup IV likopen mısır yağı (0.5 ml) içerisinde süspansiyon haline getirilerek 20 mg/kg dozlarında oral gavajla verildikten 2 saat sonra nikel sülfat (20 mg/kg, i.p.) 21 gün boyunca uygulanmıştır. Genotoksisite testlerinden biri olan kemik iliğinden mikronükleus testiyle mikronükleuslu polikromatik eritrositler (MNPCE) ve polikromatik eritrositler (PCE) incelenmiştir. Bulgular: Koruyucu amaçlı olarak likopen uygulamasının MNPCE düzeylerini nikel sülfat grubuna göre anlamlı olarak (p<0.001) düşürdüğü belirlenmiştir. Sonuç: Likopenin 20 mg/kg dozunda uygulanmasının nikel sülfatın meydana getirdiği genotoksik etkiyi azalttığı gösterilmiştir.

Destekleyen Kurum

Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.

Proje Numarası

Proje numarası verilmemiştir.

Kaynakça

  • Adeyemi, O. S., Aroge, C. S., & Akanji, M. A. (2017). Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats. Journal of Biomedical Research, 31(4), 350–357.https://doi.org/10.7555/JBR.31.20160051
  • Aksu, P., Doğan, A., Gül, S., & Kanıcı, A. (2013). Farelerde 3-Metilkolantren İle İndüklenen Fibrosarkoma Üzerine Sisteaminin Etkileri: Genotoksisitenin Araştırılması. Kafkas Univ Vet Fak Derg, 19(6), 955–961. https://doi.org/10.9775/kvfd.2013.9172
  • Asita, A. O., & Molise, T. (2011). Antimutagenic effects of red apple and watermelon juices on cyclophosphamide-induced genotoxicity in mice. African Journal of Biotechnology, 10(77), 17763-17768. https://doi.org/10.5897/AJB11.756
  • Aslantürk, Ö. S. (2003). Likopenin kromozom hasarını değiştirici etkilerinin araştırılması. (Yüksek Lisans tezi). http://hdl.handle.net/11607/98
  • Ateşşahin, A., Karahan, İ., Türk, G., Gür, S., Yılmaz, S., & Çeribaşı, A. O. (2006). Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reproductive Toxicology, 21(1), 42-47. https://doi.org/10.1016/j.reprotox.2005.05.003
  • Banji, D., Banji, O. J., Reddy, M., & Annamalai, A. R. (2013). Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. Journal of Trace Elements in Medicine and Biology, 27(3), 230-235. https://doi.org/10.1016/j.jtemb.2013.01.001
  • Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., Khodnapur, J. P., & Biradar, M. S. (2018). Primary concept of nickel toxicity - An overview. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 141–152. https://doi.org/10.1515/jbcpp-2017-0171
  • Deng, Y., Xu, Z., Liu, W., Yang, H., Xu, B., & Wei, Y. (2012). Effects of lycopene and proanthocyanidins on hepatotoxicity induced by mercuric chloride in rats. Biological Trace Element Research, 146(2), 213–223. https://doi.org/10.1007/s12011-011-9242-3
  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health , 17(3), 679. https://doi.org/10.3390/ijerph17030679
  • Guo, H., Liu, H., Wu, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2019). Nickel Carcinogenesis Mechanism: DNA Damage. International Journal of Molecular Sciences , 20(19), 4690. https://doi.org/10.3390/ijms20194690
  • Hennig, B., Petriello, M. C., Gamble, M. V., Surh, Y. J., Kresty, L. A., Frank, N., Rangkadilok, N., Ruchirawat, M., & Suk, W. A. (2018). The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. Reviews on Environmental Health, 33(1), 87–97. https://doi.org/10.1515/reveh-2017-0038
  • Ijomone, O. M., Olatunji, S. Y., Owolabi, J. O., Naicker, T., & Aschner, M. (2018). Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. Journal of Trace Elements in Medicine and Biology, 50, 16–23. https://doi.org/10.1016/j.jtemb.2018.05.017
  • Imran, M., Ghorat, F., Ul‐haq, I., Ur‐rehman, H., Aslam, F., Heydari, M., Shariati, M. A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M. H., & Rebezov, M. (2020). Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants, 9(8), 1–27. https://doi.org/10.3390/antiox9080706
  • Jiang, W., Guo, M. H., & Hai, X. (2016). Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World Journal of Gastroenterology, 22(46), 10180–10188. https://doi.org/10.3748/wjg.v22.i46.10180
  • Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511
  • Kim, H., Loftus, J. P., Gagné, J. W., Rutzke, M. A., Glahn, R. P., & Wakshlag, J. J. (2018). Evaluation of selected ultra-trace minerals in commercially available dry dog foods. Veterinary Medicine : Research and Reports, 9, 43. https://doi.org/10.2147/VMRR.S165890
  • Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules , 24(22), 4132. https://doi.org/10.3390/molecules24224132
  • Matos, H. R., Capelozzi, V. L., Gomes, O. F., Di Mascio, P., & Medeiros, M. H. (2001). Lycopene inhibits DNA damage and liver necrosis in rats treated with ferric nitrilotriacetate. Archives of Biochemistry and Biophysics, 396(2), 171-177. https://doi.org/10.1006/abbi.2001.2611
  • Owumi, S. E., Olayiwola, Y. O., Alao, G. E., Gbadegesin, M. A., & Odunola, O. A. (2019). Cadmium and nickel co‐exposure exacerbates genotoxicity and not oxido‐inflammatory stress in liver and kidney of rats: Protective role of omega‐3 fatty acid. Environmental toxicology, 35(2), 231-241. https://doi.org/10.1002/tox.22860
  • Schmid, W. (1975). The micronucleus test. Mutation Research, 31(1), 9–15. https://doi.org/10.1016/0165-1161(75)90058-8
  • Şekeroğlu, V., & Atli-Şekeroğlu, Z. (2011). Genotoksik hasarın belirlenmesinde mikronükleus testi Micronucleus test for determining genotoxic damage. Türk Hijyen ve Deneysel Biyoloji Dergisi, 68(4), 241–252. https://doi.org/10.5505/TurkHijyen.2011.06977
  • Sharma, S., & Vijaya, P. (2015). Ameliorating potential of lycopene against cadmium toxicity in kidney of albino mice. International Journal of Advanced Research, 3(2), 766–770.
  • Tchonkouang, R. D. N., Antunes, M. D. C., & Vieira, M. M. C. (2022). Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products. In Martínez-Espinosa, R.M (ed.), Carotenoids - New Perspectives and Application [Working Title].https://doi.org/10.5772/ıntechopen.103933
  • Temamoğulları, F., Aksu Kılıçle, P., Gürler, Ş., & Garip, Z. (2022). Effect of Bromelain Against Nickel Genotoxication in Rats. Ataturk Universitesi Veteriner Bilimleri Dergisi, 17(1), 26–30. https://doi.org/10.54614/VetSciPract.2022.1050128
  • Timothy, N., & Tagui Williams, E. (2019). Environmental Pollution by Heavy Metal: An Overview. International Journal of Environmental Chemistry, 3(2), 72-82. https://doi.org/10.11648/j.ijec.20190302.14
  • Torbergsen, A. C., & Collins, A. R. (2000). Recovery of human lymphocytes from oxidative DNA damage; the apparent enhancement of DNA repair by carotenoids is probably simply an antioxidant effect. European Journal of Nutrition, 39(2), 80-85. https://doi.org/10.1007/s003940050006
  • Usman, M., Murtaza, B., Natasha, N., Imran, M., Abbas, G., Amjad, M., Shahid, M., Ibrahim, S. M., Owens, G., & Murtaza, G. (2022). Multivariate analysis of accumulation and critical risk analysis of potentially hazardous elements in forage crops. Environmental Monitoring and Assessment, 194(2), 1–13. https://doi.org/10.1007/s10661-022-09799-8
  • Yasmeen, N., Sameer, A. S., & Nissar, S. (2022). Lycopene. In J. Kour & G. A. Nayik (eds.), Nutraceuticals and Health Care (pp. 115–134). Academic Press. https://doi.org/10.1016/C2020-0-03223-8
  • Zhivagui, M., Korenjak, M., & Zavadil, J. (2016). Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic & Clinical Pharmacology & Toxicology, 121, 16–22. https://doi.org/10.1111/bcpt.12690
  • Zhu, Y., & Costa, M. (2020). Metals and molecular carcinogenesis. Carcinogenesis, 41(9), 1161–1172. https://doi.org/10.1093/carcın/bgaa076

Protective Effect of Lycopene Against Genotoxicity of Nickel Sulphate in Rats

Yıl 2022, Cilt: 11 Sayı: Supplement 1 - Veteriner Farmakoloji Kongresi Özel Sayısı, 1 - 6, 01.12.2022
https://doi.org/10.53424/balikesirsbd.1144724

Öz

Aim: Nickel, which has a wide usage area in industries, has teratogenic, carcinogenic, immunotoxic, and genotoxic effects. In this study, the protective effects of lycopene, which has antioxidant properties, were investigated against genotoxicity caused by nickel sulphate. Materials and Methods: In the study, a total of 24 rats (Wistar albino) were divided into four groups: Group I (control) was given daily saline intraperitoneally (i.p.) and corn oil orally by gavage (0.5 ml); Group II was given nickel sulphate (20 mg/kg, i.p.) dissolved in physiological saline; Group III was given lycopene suspended in corn oil (0.5 ml) by oral gavage at 20 mg/kg doses; Group IV was given both lycopene suspended in corn oil (0.5 ml) by oral gavage at 20 mg/kg doses, and 2 hours later, nickel sulphate (20 mg/kg, i.p.) for 21 days. Micronucleated polychromatic erythrocytes (MNPCE) and polychromatic erythrocytes (PCE) were examined by bone marrow micronucleus test, which is one of the genotoxicity tests. Results: It was determined that the administration of lycopene for preventive purposes decreased the MNPCE levels significantly (p<0.001) compared to the nickel sulphate group. Conclusion: Administration of lycopene at a dose of 20 mg/kg is protective against the genotoxic effects of nickel sulphate.

Proje Numarası

Proje numarası verilmemiştir.

Kaynakça

  • Adeyemi, O. S., Aroge, C. S., & Akanji, M. A. (2017). Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats. Journal of Biomedical Research, 31(4), 350–357.https://doi.org/10.7555/JBR.31.20160051
  • Aksu, P., Doğan, A., Gül, S., & Kanıcı, A. (2013). Farelerde 3-Metilkolantren İle İndüklenen Fibrosarkoma Üzerine Sisteaminin Etkileri: Genotoksisitenin Araştırılması. Kafkas Univ Vet Fak Derg, 19(6), 955–961. https://doi.org/10.9775/kvfd.2013.9172
  • Asita, A. O., & Molise, T. (2011). Antimutagenic effects of red apple and watermelon juices on cyclophosphamide-induced genotoxicity in mice. African Journal of Biotechnology, 10(77), 17763-17768. https://doi.org/10.5897/AJB11.756
  • Aslantürk, Ö. S. (2003). Likopenin kromozom hasarını değiştirici etkilerinin araştırılması. (Yüksek Lisans tezi). http://hdl.handle.net/11607/98
  • Ateşşahin, A., Karahan, İ., Türk, G., Gür, S., Yılmaz, S., & Çeribaşı, A. O. (2006). Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reproductive Toxicology, 21(1), 42-47. https://doi.org/10.1016/j.reprotox.2005.05.003
  • Banji, D., Banji, O. J., Reddy, M., & Annamalai, A. R. (2013). Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. Journal of Trace Elements in Medicine and Biology, 27(3), 230-235. https://doi.org/10.1016/j.jtemb.2013.01.001
  • Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., Khodnapur, J. P., & Biradar, M. S. (2018). Primary concept of nickel toxicity - An overview. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 141–152. https://doi.org/10.1515/jbcpp-2017-0171
  • Deng, Y., Xu, Z., Liu, W., Yang, H., Xu, B., & Wei, Y. (2012). Effects of lycopene and proanthocyanidins on hepatotoxicity induced by mercuric chloride in rats. Biological Trace Element Research, 146(2), 213–223. https://doi.org/10.1007/s12011-011-9242-3
  • Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health , 17(3), 679. https://doi.org/10.3390/ijerph17030679
  • Guo, H., Liu, H., Wu, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2019). Nickel Carcinogenesis Mechanism: DNA Damage. International Journal of Molecular Sciences , 20(19), 4690. https://doi.org/10.3390/ijms20194690
  • Hennig, B., Petriello, M. C., Gamble, M. V., Surh, Y. J., Kresty, L. A., Frank, N., Rangkadilok, N., Ruchirawat, M., & Suk, W. A. (2018). The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. Reviews on Environmental Health, 33(1), 87–97. https://doi.org/10.1515/reveh-2017-0038
  • Ijomone, O. M., Olatunji, S. Y., Owolabi, J. O., Naicker, T., & Aschner, M. (2018). Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. Journal of Trace Elements in Medicine and Biology, 50, 16–23. https://doi.org/10.1016/j.jtemb.2018.05.017
  • Imran, M., Ghorat, F., Ul‐haq, I., Ur‐rehman, H., Aslam, F., Heydari, M., Shariati, M. A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M. H., & Rebezov, M. (2020). Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants, 9(8), 1–27. https://doi.org/10.3390/antiox9080706
  • Jiang, W., Guo, M. H., & Hai, X. (2016). Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World Journal of Gastroenterology, 22(46), 10180–10188. https://doi.org/10.3748/wjg.v22.i46.10180
  • Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., Selamoglu, Z., Hasan, M., Kumar, M., Alshehri, M. M., & Sharifi-Rad, J. (2021). Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity, 2021, 2713511. https://doi.org/10.1155/2021/2713511
  • Kim, H., Loftus, J. P., Gagné, J. W., Rutzke, M. A., Glahn, R. P., & Wakshlag, J. J. (2018). Evaluation of selected ultra-trace minerals in commercially available dry dog foods. Veterinary Medicine : Research and Reports, 9, 43. https://doi.org/10.2147/VMRR.S165890
  • Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules , 24(22), 4132. https://doi.org/10.3390/molecules24224132
  • Matos, H. R., Capelozzi, V. L., Gomes, O. F., Di Mascio, P., & Medeiros, M. H. (2001). Lycopene inhibits DNA damage and liver necrosis in rats treated with ferric nitrilotriacetate. Archives of Biochemistry and Biophysics, 396(2), 171-177. https://doi.org/10.1006/abbi.2001.2611
  • Owumi, S. E., Olayiwola, Y. O., Alao, G. E., Gbadegesin, M. A., & Odunola, O. A. (2019). Cadmium and nickel co‐exposure exacerbates genotoxicity and not oxido‐inflammatory stress in liver and kidney of rats: Protective role of omega‐3 fatty acid. Environmental toxicology, 35(2), 231-241. https://doi.org/10.1002/tox.22860
  • Schmid, W. (1975). The micronucleus test. Mutation Research, 31(1), 9–15. https://doi.org/10.1016/0165-1161(75)90058-8
  • Şekeroğlu, V., & Atli-Şekeroğlu, Z. (2011). Genotoksik hasarın belirlenmesinde mikronükleus testi Micronucleus test for determining genotoxic damage. Türk Hijyen ve Deneysel Biyoloji Dergisi, 68(4), 241–252. https://doi.org/10.5505/TurkHijyen.2011.06977
  • Sharma, S., & Vijaya, P. (2015). Ameliorating potential of lycopene against cadmium toxicity in kidney of albino mice. International Journal of Advanced Research, 3(2), 766–770.
  • Tchonkouang, R. D. N., Antunes, M. D. C., & Vieira, M. M. C. (2022). Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products. In Martínez-Espinosa, R.M (ed.), Carotenoids - New Perspectives and Application [Working Title].https://doi.org/10.5772/ıntechopen.103933
  • Temamoğulları, F., Aksu Kılıçle, P., Gürler, Ş., & Garip, Z. (2022). Effect of Bromelain Against Nickel Genotoxication in Rats. Ataturk Universitesi Veteriner Bilimleri Dergisi, 17(1), 26–30. https://doi.org/10.54614/VetSciPract.2022.1050128
  • Timothy, N., & Tagui Williams, E. (2019). Environmental Pollution by Heavy Metal: An Overview. International Journal of Environmental Chemistry, 3(2), 72-82. https://doi.org/10.11648/j.ijec.20190302.14
  • Torbergsen, A. C., & Collins, A. R. (2000). Recovery of human lymphocytes from oxidative DNA damage; the apparent enhancement of DNA repair by carotenoids is probably simply an antioxidant effect. European Journal of Nutrition, 39(2), 80-85. https://doi.org/10.1007/s003940050006
  • Usman, M., Murtaza, B., Natasha, N., Imran, M., Abbas, G., Amjad, M., Shahid, M., Ibrahim, S. M., Owens, G., & Murtaza, G. (2022). Multivariate analysis of accumulation and critical risk analysis of potentially hazardous elements in forage crops. Environmental Monitoring and Assessment, 194(2), 1–13. https://doi.org/10.1007/s10661-022-09799-8
  • Yasmeen, N., Sameer, A. S., & Nissar, S. (2022). Lycopene. In J. Kour & G. A. Nayik (eds.), Nutraceuticals and Health Care (pp. 115–134). Academic Press. https://doi.org/10.1016/C2020-0-03223-8
  • Zhivagui, M., Korenjak, M., & Zavadil, J. (2016). Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic & Clinical Pharmacology & Toxicology, 121, 16–22. https://doi.org/10.1111/bcpt.12690
  • Zhu, Y., & Costa, M. (2020). Metals and molecular carcinogenesis. Carcinogenesis, 41(9), 1161–1172. https://doi.org/10.1093/carcın/bgaa076
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Zozan Garip 0000-0002-8971-7918

Füsun Temamoğulları 0000-0001-7738-1145

Pinar Aksu Kılıçle 0000-0002-3567-5775

Proje Numarası Proje numarası verilmemiştir.
Yayımlanma Tarihi 1 Aralık 2022
Gönderilme Tarihi 17 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: Supplement 1 - Veteriner Farmakoloji Kongresi Özel Sayısı

Kaynak Göster

APA Garip, Z., Temamoğulları, F., & Aksu Kılıçle, P. (2022). Ratlarda Nikel Sülfatın Genotoksisitesine Karşı Likopenin Koruyucu Etkisi. Balıkesir Sağlık Bilimleri Dergisi, 11(Supplement 1), 1-6. https://doi.org/10.53424/balikesirsbd.1144724

Uluslararası Hakemli Dergi

Dergimiz Açık Erişim Politikasını benimsemiş olup dergimize gönderilen yayınlar için gerek değerlendirme gerekse yayınlama dahil yazarlardan hiçbir ücret talep edilmemektedir. 

Creative Commons License

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.