Derleme
BibTex RIS Kaynak Göster

Parkinson Hastalığında İkili Görevler: Önemi, Altta Yatan Mekanizmaları ve Tedavi Yaklaşımları

Yıl 2023, Cilt: 12 Sayı: 2, 410 - 416, 23.06.2023
https://doi.org/10.53424/balikesirsbd.983069

Öz

Dopaminerjik nöronların dejenerasyonuyla ortaya çıkan Parkinson hastalığı, en sık görülen nörodejeneratif hastalıklardan biridir. Dopaminerjik nöronlar, istemli hareket ve davranışsal süreçlerin yanı sıra motor davranışların otomatikleşmesinden de sorumludur. Sensorimotor striatum işlevinde bozulma Parkinson hastalığı olan bireylerde önceden edinilmiş otomatik becerileri, yeni otomatik beceri edinimini ve kaybedilen otomatik becerileri geri kazanma yeteneğini olumsuz etkilemektedir. Bozulan motor otomatiklik, aynı anda iki görevin gerçekleştirilebilme yeteneği olan ikili görevlere yansıyacağından ikili görevlerin incelenmesi önem taşımaktadır. Bozulan otomatikliğe ek olarak, sınırlı dikkat kaynakları ve yetersiz yürütme işlevi de ikili görevlerde zorluğa neden olabilmektedir. Farmakolojik yaklaşımlar, transkraniyal doğru akım stimülasyonu ve ikili görev eğitimi; bu zorluğu iyileştirmeye yönelik temel yaklaşımlar arasında sayılabilmektedir. Bu derlemede hareketlerin otomatikliği ve otomatikliği sağlayan nöral mekanizmaların tanımı yapılmış ve Parkinson hastalığında hareketlerin otomatikliği, ikili görev zorluğu ve onu azaltmaya yönelik yaklaşımlar açıklanmıştır.

Destekleyen Kurum

Yoktur.

Proje Numarası

Yoktur.

Teşekkür

Yoktur.

Kaynakça

  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215. https://doi.org/10.1016/j.tics.2010.02.001
  • Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., & Nieuwboer, A. (2015). Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects. Neuroscience and Biobehavioral Reviews, 57, 105–117. https://doi.org/10.1016/j.neubiorev.2015.08.010
  • Çekok, K., Kahraman, T., Duran, G., Dönmez Çolakoğlu, B., Yener, G., Yerlikaya, D., & Genç, A. (2020). Timed Up and Go Test With a Cognitive Task: Correlations With Neuropsychological Measures in People With Parkinson’s Disease. Cureus, 12(9), 3–9. https://doi.org/10.7759/cureus.10604
  • Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. International Journal of Biochemistry and Cell Biology, 37(5 SPEC. ISS.), 942–946. https://doi.org/10.1016/j.biocel.2004.09.009
  • Chung, C. L. H., Mak, M. K. Y., & Hallett, M. (2020). Transcranial Magnetic Stimulation Promotes Gait Training in Parkinson Disease. Annals of Neurology, 88(5), 933–945. https://doi.org/10.1002/ana.25881
  • De Freitas, T. B., Leite, P. H. W., Doná, F., Pompeu, J. E., Swarowsky, A., & Torriani-Pasin, C. (2020). The effects of dual task gait and balance training in Parkinson’s disease: a systematic review. Physiotherapy Theory and Practice, 36(10), 1088–1096. https://doi.org/10.1080/09593985.2018.1551455
  • Ebersbach, G., Dimitrijevic, M. R., & Poewe, W. (1995). Influence of concurrent tasks on gait: a dual-task approach. Journal of Motor Behavior, 81(1), 107–113.
  • Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique, 172(1), 14–26. https://doi.org/10.1289/ehp.1307970
  • Fahn, S. (2008). Clinical Aspects of Parkinson Disease. Parkinson’s Disease, 1–8. https://doi.org/10.1016/B978-0-12-374028-1.00001-4
  • Fasano, A., Plotnik, M., Bove, F., & Berardelli, A. (2012). The neurobiology of falls. Neurological Sciences, 33(6), 1215–1223. https://doi.org/10.1007/s10072-012-1126-6
  • Floriano, E. N., Alves, J. F., Almeida, I. A. de, Souza, R. B. de, Christofoletti, G., & Santos, S. M. S. (2015). Dual task performance: a comparison between healthy elderly individuals and those with Parkinson’s disease. Fisioterapia Em Movimento, 28(2), 251–258. https://doi.org/10.1590/0103-5150.028.002.ao05
  • Foley, J. A., Kaschel, R., & Sala, S. Della. (2013). Dual task performance in Parkinson’s disease. Behavioural Neurology, 27(2), 183–191. https://doi.org/10.3233/BEN-110238
  • Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., & Hausdorff, J. M. (2005). Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Movement Disorders, 20(9), 1109–1114. https://doi.org/10.1002/mds.20507
  • Friedman, A., Poison, M. C., Dafoe, C. G., & Gaskill, S. J. (1982). Dividing Attention Within and Between Hemispheres: Testing a Multiple Resources Approach to Limited-Capacity Information Processing. Journal of Experimental Psychology: Human Perception and Performance, 8(5), 625–650.
  • Friz, N. E., Cheek, F. ., & Nichols-Larsen, D. S. (2016). Motor-cognitive dual-task trianing in neurologic disorders: a systematic review. J Neurol Phys Ther, 39(3), 142–153. https://doi.org/10.1097/NPT.0000000000000090.Motor-Cognitive
  • Gerfen, C. R., & Wilson, C. J. (1996). The basal ganglia. In Handbook of chemical neuroanatomy (pp. 371–488). https://doi.org/10.4324/9781315692289
  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045
  • Kelly, V. E., Janke, A. A., & Shumway-Cook, A. (2010). Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Experimental Brain Research, 207(1–2), 65–73. https://doi.org/10.1007/s00221-010-2429-6
  • Kimura, T., & Matsuura, R. (2020). Additional effects of a cognitive task on dual-task training to reduce dual-task interference. Psychology of Sport and Exercise, 46(February 2019), 101588. https://doi.org/10.1016/j.psychsport.2019.101588
  • Li, Z., Wang, T., Liu, H., Jiang, Y., Wang, Z., & Zhuang, J. (2020). Dual-task training on gait, motor symptoms, and balance in patients with Parkinson’s disease: a systematic review and meta-analysis. Clinical Rehabilitation, 34(11), 1355–1367. https://doi.org/10.1177/0269215520941142
  • McNeely, M. E., Duncan, R. P., & Earhart, G. M. (2012). Medication improves balance and complex gait performance in Parkinson disease. Gait and Posture, 36(1), 144–148. https://doi.org/10.1016/j.gaitpost.2012.02.009
  • McNeely, M. E., & Earhart, G. M. (2013). Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism and Related Disorders, 19(1), 86–91. https://doi.org/10.1016/j.parkreldis.2012.07.013
  • Nieuwhof, F., Bloem, B. R., Reelick, M. F., Aarts, E., Maidan, I., Mirelman, A., Hausdorff, J. M., Toni, I., & Helmich, R. C. (2017). Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain, 140(5), 1384–1398. https://doi.org/10.1093/brain/awx042
  • Orcioli-Silva, D., Vitório, R., Nóbrega-Sousa, P., da Conceição, N. R., Beretta, V. S., Lirani-Silva, E., & Gobbi, L. T. B. (2020). Levodopa Facilitates Prefrontal Cortex Activation During Dual Task Walking in Parkinson Disease. Neurorehabilitation and Neural Repair, 34(7), 589–599. https://doi.org/10.1177/1545968320924430
  • Pashler, H. (1994). Dual-Task Interference in Simple Tasks: Data and Theory. Psychological Bulletin, 116(2), 220–244. https://doi.org/10.1037//0033-2909.116.2.220
  • Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356–5364. https://doi.org/10.1523/JNEUROSCI.3880-04.2005
  • Rochester, L., Galna, B., Lord, S., & Burn, D. (2014). The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience, 265, 83–94. https://doi.org/10.1016/j.neuroscience.2014.01.041
  • Seger, C. A., & Spiering, B. J. (2011). A critical review of habit learning and the basal ganglia. Frontiers in Systems Neuroscience, 5(AUGUST 2011), 1–9. https://doi.org/10.3389/fnsys.2011.00066
  • Seri-Fainshtat, E., Israel, Z., Weiss, A., & Hausdorff, J. M. (2013). Impact of sub-thalamic nucleus deep brain stimulation on dual tasking gait in Parkinson’s disease. Journal of NeuroEngineering and Rehabilitation, 10(1), 1–10. https://doi.org/10.1186/1743-0003-10-38
  • Strouwen, C., Molenaar, E. A. L. M., Münks, L., Keus, S. H. J., Bloem, B. R., Rochester, L., & Nieuwboer, A. (2015). Dual tasking in Parkinsons disease: Should we train hazardous behavior? Expert Review of Neurotherapeutics, 15(9), 1031–1039. https://doi.org/10.1586/14737175.2015.1077116
  • Swank, C., Mehta, J., & Criminger, C. (2016). Transcranial direct current stimulation lessens dual task cost in people with Parkinson’s disease. Neuroscience Letters, 626, 1–5. https://doi.org/10.1016/j.neulet.2016.05.010
  • Tombu, M., & Jolicoæur, P. (2003). A Central Capacity Sharing Model of Dual-Task Performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18. https://doi.org/10.1037/0096-1523.29.1.3
  • Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177. https://doi.org/10.1080/14639220210123806
  • Witt, K., Pulkowski, U., Herzog, J., Lorenz, D., Hamel, W., Deuschl, G., & Krack, P. (2004). Deep Brain Stimulation of the Subthalamic Nucleus Improves Cognitive Flexibility but Impairs Response Inhibition in Parkinson Disease. Archives of Neurology, 61(5), 697–700. https://doi.org/10.1001/archneur.61.5.697
  • Wollesen, B., & Voelcker-Rehage, C. (2014). Training effects on motor-cognitive dual-task performance in older adults: A systematic review. European Review of Aging and Physical Activity, 11(1), 5–24. https://doi.org/10.1007/s11556-013-0122-z
  • Wu, T., Chan, P., & Hallett, M. (2008). Neural correlates of dual task performance in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 79(7), 760–766.
  • Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 2250–2259. https://doi.org/10.1093/brain/awh569
  • Wu, T., Hallett, M., & Chan, P. (2015). Motor automaticity in Parkinson’s disease. Neurobiology of Disease, 82, 226–234. https://doi.org/10.1016/j.nbd.2015.06.014
  • Wu, T., Kansaku, K., & Hallett, M. (2004). How Self-Initiated Memorized Movements Become Automatic: A Functional MRI Study. Journal of Neurophysiology, 91(4), 1690–1698. https://doi.org/10.1152/jn.01052.2003
  • Wu, T., Liu, J., Zhang, H., Hallett, M., Zheng, Z., & Chan, P. (2015). Attention to automatic movements in Parkinson’s disease: Modified automatic mode in the striatum. Cerebral Cortex, 25(10), 3330–3342. https://doi.org/10.1093/cercor/bhu135

Dual Tasks in Parkinson’s Disease: Importance, Underlying Mechanisms and Treatment Approaches

Yıl 2023, Cilt: 12 Sayı: 2, 410 - 416, 23.06.2023
https://doi.org/10.53424/balikesirsbd.983069

Öz

Parkinson's disease, which is caused by the degeneration of dopaminergic neurons, is one of the most common neurodegenerative diseases. Dopaminergic neurons are responsible for automating voluntary movement and behavioral processes, as well as motor behavior. Impairment in function of sensorimotor striatum affects negatively prior acquired automatic skills, new automatic skill acquisition and the ability to recovery lost automatic skills in individuals with Parkinson’s disease. As impaired motor automaticity will reflect on dual tasks, it is important to investigate dual tasks, that are ability of performing two tasks simultaneously. In addition to impaired motor automaticity, restricted attention resources and insufficient executive function may also lead to difficulty in dual tasks. Pharmacological approaches, transcranial direct current stimulation, and dual task training may be considered among the main approaches to improve this difficulty. In this review, movement automaticity, and neural mechanisms that provide automaticity have been described and movement automaticity in Parkinson’s disease, dual task difficulty, and approaches to reduce it have been explained.

Proje Numarası

Yoktur.

Kaynakça

  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215. https://doi.org/10.1016/j.tics.2010.02.001
  • Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., & Nieuwboer, A. (2015). Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects. Neuroscience and Biobehavioral Reviews, 57, 105–117. https://doi.org/10.1016/j.neubiorev.2015.08.010
  • Çekok, K., Kahraman, T., Duran, G., Dönmez Çolakoğlu, B., Yener, G., Yerlikaya, D., & Genç, A. (2020). Timed Up and Go Test With a Cognitive Task: Correlations With Neuropsychological Measures in People With Parkinson’s Disease. Cureus, 12(9), 3–9. https://doi.org/10.7759/cureus.10604
  • Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. International Journal of Biochemistry and Cell Biology, 37(5 SPEC. ISS.), 942–946. https://doi.org/10.1016/j.biocel.2004.09.009
  • Chung, C. L. H., Mak, M. K. Y., & Hallett, M. (2020). Transcranial Magnetic Stimulation Promotes Gait Training in Parkinson Disease. Annals of Neurology, 88(5), 933–945. https://doi.org/10.1002/ana.25881
  • De Freitas, T. B., Leite, P. H. W., Doná, F., Pompeu, J. E., Swarowsky, A., & Torriani-Pasin, C. (2020). The effects of dual task gait and balance training in Parkinson’s disease: a systematic review. Physiotherapy Theory and Practice, 36(10), 1088–1096. https://doi.org/10.1080/09593985.2018.1551455
  • Ebersbach, G., Dimitrijevic, M. R., & Poewe, W. (1995). Influence of concurrent tasks on gait: a dual-task approach. Journal of Motor Behavior, 81(1), 107–113.
  • Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique, 172(1), 14–26. https://doi.org/10.1289/ehp.1307970
  • Fahn, S. (2008). Clinical Aspects of Parkinson Disease. Parkinson’s Disease, 1–8. https://doi.org/10.1016/B978-0-12-374028-1.00001-4
  • Fasano, A., Plotnik, M., Bove, F., & Berardelli, A. (2012). The neurobiology of falls. Neurological Sciences, 33(6), 1215–1223. https://doi.org/10.1007/s10072-012-1126-6
  • Floriano, E. N., Alves, J. F., Almeida, I. A. de, Souza, R. B. de, Christofoletti, G., & Santos, S. M. S. (2015). Dual task performance: a comparison between healthy elderly individuals and those with Parkinson’s disease. Fisioterapia Em Movimento, 28(2), 251–258. https://doi.org/10.1590/0103-5150.028.002.ao05
  • Foley, J. A., Kaschel, R., & Sala, S. Della. (2013). Dual task performance in Parkinson’s disease. Behavioural Neurology, 27(2), 183–191. https://doi.org/10.3233/BEN-110238
  • Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., & Hausdorff, J. M. (2005). Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Movement Disorders, 20(9), 1109–1114. https://doi.org/10.1002/mds.20507
  • Friedman, A., Poison, M. C., Dafoe, C. G., & Gaskill, S. J. (1982). Dividing Attention Within and Between Hemispheres: Testing a Multiple Resources Approach to Limited-Capacity Information Processing. Journal of Experimental Psychology: Human Perception and Performance, 8(5), 625–650.
  • Friz, N. E., Cheek, F. ., & Nichols-Larsen, D. S. (2016). Motor-cognitive dual-task trianing in neurologic disorders: a systematic review. J Neurol Phys Ther, 39(3), 142–153. https://doi.org/10.1097/NPT.0000000000000090.Motor-Cognitive
  • Gerfen, C. R., & Wilson, C. J. (1996). The basal ganglia. In Handbook of chemical neuroanatomy (pp. 371–488). https://doi.org/10.4324/9781315692289
  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376. https://doi.org/10.1136/jnnp.2007.131045
  • Kelly, V. E., Janke, A. A., & Shumway-Cook, A. (2010). Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Experimental Brain Research, 207(1–2), 65–73. https://doi.org/10.1007/s00221-010-2429-6
  • Kimura, T., & Matsuura, R. (2020). Additional effects of a cognitive task on dual-task training to reduce dual-task interference. Psychology of Sport and Exercise, 46(February 2019), 101588. https://doi.org/10.1016/j.psychsport.2019.101588
  • Li, Z., Wang, T., Liu, H., Jiang, Y., Wang, Z., & Zhuang, J. (2020). Dual-task training on gait, motor symptoms, and balance in patients with Parkinson’s disease: a systematic review and meta-analysis. Clinical Rehabilitation, 34(11), 1355–1367. https://doi.org/10.1177/0269215520941142
  • McNeely, M. E., Duncan, R. P., & Earhart, G. M. (2012). Medication improves balance and complex gait performance in Parkinson disease. Gait and Posture, 36(1), 144–148. https://doi.org/10.1016/j.gaitpost.2012.02.009
  • McNeely, M. E., & Earhart, G. M. (2013). Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism and Related Disorders, 19(1), 86–91. https://doi.org/10.1016/j.parkreldis.2012.07.013
  • Nieuwhof, F., Bloem, B. R., Reelick, M. F., Aarts, E., Maidan, I., Mirelman, A., Hausdorff, J. M., Toni, I., & Helmich, R. C. (2017). Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain, 140(5), 1384–1398. https://doi.org/10.1093/brain/awx042
  • Orcioli-Silva, D., Vitório, R., Nóbrega-Sousa, P., da Conceição, N. R., Beretta, V. S., Lirani-Silva, E., & Gobbi, L. T. B. (2020). Levodopa Facilitates Prefrontal Cortex Activation During Dual Task Walking in Parkinson Disease. Neurorehabilitation and Neural Repair, 34(7), 589–599. https://doi.org/10.1177/1545968320924430
  • Pashler, H. (1994). Dual-Task Interference in Simple Tasks: Data and Theory. Psychological Bulletin, 116(2), 220–244. https://doi.org/10.1037//0033-2909.116.2.220
  • Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356–5364. https://doi.org/10.1523/JNEUROSCI.3880-04.2005
  • Rochester, L., Galna, B., Lord, S., & Burn, D. (2014). The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience, 265, 83–94. https://doi.org/10.1016/j.neuroscience.2014.01.041
  • Seger, C. A., & Spiering, B. J. (2011). A critical review of habit learning and the basal ganglia. Frontiers in Systems Neuroscience, 5(AUGUST 2011), 1–9. https://doi.org/10.3389/fnsys.2011.00066
  • Seri-Fainshtat, E., Israel, Z., Weiss, A., & Hausdorff, J. M. (2013). Impact of sub-thalamic nucleus deep brain stimulation on dual tasking gait in Parkinson’s disease. Journal of NeuroEngineering and Rehabilitation, 10(1), 1–10. https://doi.org/10.1186/1743-0003-10-38
  • Strouwen, C., Molenaar, E. A. L. M., Münks, L., Keus, S. H. J., Bloem, B. R., Rochester, L., & Nieuwboer, A. (2015). Dual tasking in Parkinsons disease: Should we train hazardous behavior? Expert Review of Neurotherapeutics, 15(9), 1031–1039. https://doi.org/10.1586/14737175.2015.1077116
  • Swank, C., Mehta, J., & Criminger, C. (2016). Transcranial direct current stimulation lessens dual task cost in people with Parkinson’s disease. Neuroscience Letters, 626, 1–5. https://doi.org/10.1016/j.neulet.2016.05.010
  • Tombu, M., & Jolicoæur, P. (2003). A Central Capacity Sharing Model of Dual-Task Performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18. https://doi.org/10.1037/0096-1523.29.1.3
  • Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177. https://doi.org/10.1080/14639220210123806
  • Witt, K., Pulkowski, U., Herzog, J., Lorenz, D., Hamel, W., Deuschl, G., & Krack, P. (2004). Deep Brain Stimulation of the Subthalamic Nucleus Improves Cognitive Flexibility but Impairs Response Inhibition in Parkinson Disease. Archives of Neurology, 61(5), 697–700. https://doi.org/10.1001/archneur.61.5.697
  • Wollesen, B., & Voelcker-Rehage, C. (2014). Training effects on motor-cognitive dual-task performance in older adults: A systematic review. European Review of Aging and Physical Activity, 11(1), 5–24. https://doi.org/10.1007/s11556-013-0122-z
  • Wu, T., Chan, P., & Hallett, M. (2008). Neural correlates of dual task performance in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 79(7), 760–766.
  • Wu, T., & Hallett, M. (2005). A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain, 128(10), 2250–2259. https://doi.org/10.1093/brain/awh569
  • Wu, T., Hallett, M., & Chan, P. (2015). Motor automaticity in Parkinson’s disease. Neurobiology of Disease, 82, 226–234. https://doi.org/10.1016/j.nbd.2015.06.014
  • Wu, T., Kansaku, K., & Hallett, M. (2004). How Self-Initiated Memorized Movements Become Automatic: A Functional MRI Study. Journal of Neurophysiology, 91(4), 1690–1698. https://doi.org/10.1152/jn.01052.2003
  • Wu, T., Liu, J., Zhang, H., Hallett, M., Zheng, Z., & Chan, P. (2015). Attention to automatic movements in Parkinson’s disease: Modified automatic mode in the striatum. Cerebral Cortex, 25(10), 3330–3342. https://doi.org/10.1093/cercor/bhu135
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Aybüke Cansu Kalkan 0000-0003-1329-7870

Turhan Kahraman 0000-0002-8776-0664

Arzu Genç 0000-0001-9481-6083

Proje Numarası Yoktur.
Yayımlanma Tarihi 23 Haziran 2023
Gönderilme Tarihi 15 Ağustos 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kalkan, A. C., Kahraman, T., & Genç, A. (2023). Parkinson Hastalığında İkili Görevler: Önemi, Altta Yatan Mekanizmaları ve Tedavi Yaklaşımları. Balıkesir Sağlık Bilimleri Dergisi, 12(2), 410-416. https://doi.org/10.53424/balikesirsbd.983069

Uluslararası Hakemli Dergi

Dergimiz Açık Erişim Politikasını benimsemiş olup dergimize gönderilen yayınlar için gerek değerlendirme gerekse yayınlama dahil yazarlardan hiçbir ücret talep edilmemektedir. 

Creative Commons License

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.