Derleme
BibTex RIS Kaynak Göster

The Nutritional Value and Health Impacts of Edible Insects

Yıl 2025, Cilt: 4 Sayı: 1, 18 - 27, 11.07.2025
https://doi.org/10.61830/balkansbd.1639485

Öz

It is estimated that the world population will reach 9 billion by 2050, and this situation is one of the biggest challenges that may be encountered in the future. Along with population growth, the problems caused by climate change have led people to seek protein sources that are more efficient and sustainable than traditional protein sources. Entomophagy is a word of Greek origin and refers to the consumption of insects as food. Today, 3% of edible insects are collected from nature using traditional methods, while the remaining portion is produced industrially. Edible insects have the potential to be a healthy and sustainable alternative food source due to their nutritional content. They contain protein in amounts comparable to meat, as well as high levels of vitamin B12, iron, zinc, fiber, essential amino acids, omega-3 and omega-6 fatty acids, and antioxidant compounds, which provide significant health benefits. Various in vivo and in vitro studies have shown that edible insects are an effective protein source and possess antioxidant, antihypertensive, anti-inflammatory, and immunomodulatory properties. Additionally, their unique bioactive compounds have been found to play a role in the prevention of chronic diseases. However, despite their advantages, edible insects face challenges in terms of consumer acceptance, cultural preferences, microbiological safety, and biotechnological processing. To increase consumption and acceptance, further research is needed on sensory, cultural, and legal factors.

Kaynakça

  • 1. Sun-Waterhouse D, Waterhouse GI, You L, Zhang J, Liu Y, Ma L, et al. Transforming insect biomass into consumer wellness foods: A review. Food Res Int. 2016;89:129-51.
  • 2. Dobermann D, Swift JA, Field LM. Opportunities and hurdles of edible insects for food and feed. Nutr Bull. 2017;42(4):293-308.
  • 3. Van Huis A, Oonincx DG. The environmental sustainability of insects as food and feed. A review. Agron Sustain Dev. 2017;37:43.
  • 4. Gao Y, Wang D, Xu ML, Shi SS, Xiong JF. Toxicological characteristics of edible insects in China: A historical review. Food Chem Toxicol. 2018;119:237-51.
  • 5. Gravel A, Doyen A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov Food Sci Emerg Technol. 2020;59:102272. 6. Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci Anim Resour. 2019;39(4):521-40.
  • 7. Ojha S, Bekhit AE, Grune T, Schlüter OK. Bioavailability of nutrients from edible insects. Curr Opin Food Sci. 2021;41:240-8.
  • 8. Kurgun OA. Yenilebilir Böcekler. Gastronomi Trendler ve Milenyum ve Ötesi. Ankara: Detay Yayıncılık; 2017. p. 255-66.
  • 9. Aydoğan Z, İncekara Ü, Gurol A. Preliminary study on edible insect species Cybister limbatus (Fabricius 1775) and its heavy element contents. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi. 2018;28(1):94-9. 10. Güneş E, Sormaz Ü, Nizamlıoğlu HF. Gıda ve turizm sektöründe böceklere yer var mı? Uluslararası Türk Dünyası Turizm Araştırmaları Dergisi. 2017;2(1):63-75. 11. Sabuncuoğlu KM, Turgud FK, Şamli HE. Bazı böcek türlerinin yemlerde kullanım olanakları. Tekirdağ Ziraat Fakültesi Dergisi. 2018;15(2):73-7. 12. Mankan E. Gastronomide yeni trendleryenilebilir böcekler. Electronic Turkish Studies. 2017;12(3):425-440.
  • 13. İpçak HH, Özüretmen S, Alçiçek A, Özelçam H. Alternatif protein kaynaklarının hayvan beslemede kullanım olanakları. Hayvansal Üretim. 2018;59(1):51-8.
  • 14. Kouřimská L, Adámková A. Nutritional and sensory quality of edible insects. NFS J. 2016;4:22-6.
  • 15. Payne CL, Scarborough P, Rayner M, Nonaka K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. Eur J Clin Nutr. 2016;70(3):285-91.
  • 16. Muslu M. Sağlığın Geliştirilmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Yenilebilir böcekler. Gıda Dergisi. 2020;45(5):1009-18. 17. Kulma M, Kouřimská L, Homolková D, Božik M, Plachý V, Vrabec V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J Food Compos Anal. 2020;92:103570.
  • 18. Ordoñez-Araque R, Egas-Montenegro E. Edible insects: A food alternative for the sustainable development of the planet. Int J Gastron Food Sci. 2021;23:100304.
  • 19. Boulos S, Tännler A, Nyström L. Nitrogen-toProtein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front Nutr. 2020;7(89). 20. Jonas-Levi A, Martinez JJ. The high level of protein content reported in insects for food and feed is overestimated. J Food Compos Anal. 2017;62:184-8. 21. Ravi HK, Degrou A, Costil J, Trespeuch C, Chemat F, Vian MA. Effect of devitalization techniques on the lipid, protein, antioxidant, and chitin fractions of black soldier fly (Hermetia illucens) larvae. Eur Food Res Technol. 2020;246:2549-68.
  • 22. Ghosh S, Haldar P, Mandal DK. Evaluation of nutrient quality of a short-horned grasshopper, Oxya hyla hyla Serville (Orthoptera: Acrididae) in search of new protein source. J Entomol Zool Stud. 2016;4(1):193-7.
  • 23. Aksoy AB, El SN. Geleceğin protein kaynağı: Yenilebilir böcekler. Turk J Agric Food Sci Technol. 2021;9(5):887-96.
  • 24. Stone AK, Tanaka T, Nickerson MT. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J Food Sci Technol. 2019;56(7):3355-3363.
  • 25. Perez-Santaescolastica C, de Pril I, van de Voorde I, Fraeye I. Fatty acid and amino acid profiles of seven edible insects: Focus on lipid class composition and protein conversion factors. Foods. 2023;12(22):4090.
  • 26. Demirci M, Yetim H. İnsan gıdası olarak böcek proteinleri tüketimi ve getirdiği sorunlar. Helal ve Etik Araştırmalar Dergisi. 2021;3(2):11-22.
  • 27. de Castro RJS, Ohara A, Aguilar JGS, Domingues MAF. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trend Food Sci Technol. 2018;76:82-9. 28. Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020;18:1-11.
  • 29. Tekiner İH, Darama G, Özatila B, Yetim H. Beslenme ve Gıda Teknolojisi Yönünden Yenilebilir Böcekler. Academic Platform Journal of Halal Lifestyle. 2022;4(1):18-29. 30. Orkusz A. Edible insects versus meat— nutritional comparison: Knowledge of their composition is the key to good health. Nutrients. 2021;13(4):1207. 31. Latunde-Dada GO, Yang W, Vera Aviles M. In vitro iron availability from insects and sirloin beef. J Agric Food Chem. 2016;64:8420–24.
  • 32. Köhler R, Kariuki L, Lambert C, Biesalski HK. Protein, amino acid and mineral composition of some edible insects from Thailand. J Asia Pac Entomol. 2019;22(1):372-8.
  • 33. Mwangi MN, Oonincx DG, Stouten T, Veenenbos M, Melse-Boonstra A, Dicke M, et al. Insects as sources of iron and zinc in human nutrition. Nutr Res Rev. 2018;31(2):248-55. 34. Tang C, Yang D, Liao H, Sun H, Liu C, Wei L, et al. Edible insects as a food source: a review. Food Prod Process Nutr. 2019;1(1):1-13.
  • 35. Ssepuuya G, Smets R, Nakimbugwe D, Van Der Borght M, Claes J. Nutrient composition of the long-horned grasshopper Ruspolia differens Serville: effect of swarming season and sourcing geographical area. Food Chem. 2019;301:125305. 36. Van Huis A. Nutrition and health of edible insects. Curr Opin Clin Nutr Metab Care. 2020;23(3):228-31.
  • 37. Jansson, A. and Berggren, A. Insects as Food – Something for the Future? A report from Future Agriculture. Uppsala, Swedish University of Agricultural Sciences (SLU). 2015;1-36. 38. Roos N, Van Huis A. Consuming insects: are there health benefits? J Insects Food Feed. 2017;3(4):225-9.
  • 39. Tripathi K, Singh A. Chitin, chitosan and their pharmacological activities: A review. Int J Pharm Sci Res. 2018;9(7):2626-35. 40. Stull VJ. Impacts of insect consumption on human health. J Insects Food Feed. 2021;7(5):695-713.
  • 41. Aguilar-Toalá JE, Cruz-Monterrosa RG, Liceaga AM. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. Insects. 2022;13(11):1007. 42. Adegboye ARA, Bawa M, Keith R, Twefik S, Tewfik I. Edible Insects: Sustainable nutrientrich foods to tackle food insecurity and malnutrition. World Nutr. 2021;12(4):176-89.
  • 43. Di Mattia C, Battista N, Sacchetti G, Serafini M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front Nutr. 2019;6:106. 44. Nino MC, Reddivari L, Ferruzzi MG, Liceaga AM. Targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus. Foods. 2021;10(10):2295.
  • 45. Mendoza-Salazar A, Santiago-López L, Torres-Llanez MJ, Hernández-Mendoza A, Vallejo-Cordoba B, Liceaga AM, et al. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. Fermentation. 2021;7(3):153. 46. Nowakowski AC, Miller AC, Miller ME, Xiao H, Wu X. Potential health benefits of edible insects. Crit Rev Food Sci Nutr. 2022;62(13):3499-508.
  • 47. Ahn MY, Hwang JS, Kim MJ, Park KK. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high-fat diet. Arch Pharm Res. 2016;39:926-36.
  • 48. Kılınç GS, Çelen FN, Bağdatlıoğlu N. Protein Kaynağı Olarak Böcekler. Turkish Journal of Agriculture-Food Science and Technology. 2022;10(3):468-74.
  • 49. Da Silva Lucas AJ, de Oliveira LM, Da Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020;311:126022.
  • 50. Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10(11):461.
  • 51. Rumbos CI, Karapanagiotidis IT, Mente E, Psofakis P, Athanassiou CG. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci Rep. 2020;10(1):1-10.
  • 52. Lange K, Nakamura Y. Edible insects as a source of food bioactives and their potential health effects. J Food Bioact. 2021;14.
  • 53. Ji YJ, Liu HN, Kong XF, Blachier F, Geng MM, Liu YY, et al. Use of insect powder as a source of dietary protein in early-weaned piglets. J Anim Sci. 2016;94(suppl_3):111-6. 54. Smith J, Doe A, Johnson K. Advances in edible insect research: Global perspectives

Yenilebilir Böceklerin Besin Değeri ve Sağlığa Etkileri

Yıl 2025, Cilt: 4 Sayı: 1, 18 - 27, 11.07.2025
https://doi.org/10.61830/balkansbd.1639485

Öz

Dünya nüfusunun 2050 yılına kadar 9 milyara ulaşacağı tahmin edilmektedir ve bu durum gelecekte karşılaşılabilecek en büyük zorluklardan biridir. Nüfus artışı ile birlikte iklim değişikliğinin yarattığı sorunlar insanları geleneksel protein kaynaklarına göre daha verimli ve sürdürülebilir olan alternatif protein kaynakları arayışına yönlendirmiştir. Entomofaji yunanca kökenli bir kelimedir ve böceklerin besin olarak tüketilmesi anlamına gelmektedir. Günümüzde besin olarak tüketilen böceklerin %3'ü geleneksel yöntemlerle doğadan toplanırken geri kalanı, endüstriyel üretimdir. Yenilebilir böcekler, besin içerikleri ile sağlıklı ve sürdürülebilir alternatifler olma potansiyeline sahiptir. Yenilebilir böcekler, ete benzer oranda protein bulundurması, yüksek B12 vitamini, demir, çinko, lif, esansiyel aminoasitler, omega-3, omega-6 yağ asitleri ve antioksidan içerikleriyle üstün sağlık yararlarına sahip olabilir. Yapılan in vitro ve in vivo çalışmalar, yenilebilir böceklerin değerli besin kaynağı olmasının yanı sıra antioksidan, antihipertansif, antiinflamatuar, antimikrobiyal ve immünomodülatör özelliklere sahip olduğunu göstermiştir. Ancak, kronik hastalıkların önlenmesi ve yönetiminde potansiyel uygulamalarını desteklemek için farklı biyoaktivitelerini ve sağlık yararlarını doğrulayabilen insan çalışmaları yetersizdir. Yenilebilir böcekler, ümit verici ve yeterince araştırılmamış makro, mikro ve biyoaktif besin kaynağıdır. Böcek bileşenlerini tanımlamak ve karakterize etmek, iyi tasarlanmış kontrollü klinik müdahale çalışmaları, yüksek verimlilik tekniklerinin araştırılması gibi birçok araştırmaya ihtiyaç vardır.

Kaynakça

  • 1. Sun-Waterhouse D, Waterhouse GI, You L, Zhang J, Liu Y, Ma L, et al. Transforming insect biomass into consumer wellness foods: A review. Food Res Int. 2016;89:129-51.
  • 2. Dobermann D, Swift JA, Field LM. Opportunities and hurdles of edible insects for food and feed. Nutr Bull. 2017;42(4):293-308.
  • 3. Van Huis A, Oonincx DG. The environmental sustainability of insects as food and feed. A review. Agron Sustain Dev. 2017;37:43.
  • 4. Gao Y, Wang D, Xu ML, Shi SS, Xiong JF. Toxicological characteristics of edible insects in China: A historical review. Food Chem Toxicol. 2018;119:237-51.
  • 5. Gravel A, Doyen A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov Food Sci Emerg Technol. 2020;59:102272. 6. Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci Anim Resour. 2019;39(4):521-40.
  • 7. Ojha S, Bekhit AE, Grune T, Schlüter OK. Bioavailability of nutrients from edible insects. Curr Opin Food Sci. 2021;41:240-8.
  • 8. Kurgun OA. Yenilebilir Böcekler. Gastronomi Trendler ve Milenyum ve Ötesi. Ankara: Detay Yayıncılık; 2017. p. 255-66.
  • 9. Aydoğan Z, İncekara Ü, Gurol A. Preliminary study on edible insect species Cybister limbatus (Fabricius 1775) and its heavy element contents. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi. 2018;28(1):94-9. 10. Güneş E, Sormaz Ü, Nizamlıoğlu HF. Gıda ve turizm sektöründe böceklere yer var mı? Uluslararası Türk Dünyası Turizm Araştırmaları Dergisi. 2017;2(1):63-75. 11. Sabuncuoğlu KM, Turgud FK, Şamli HE. Bazı böcek türlerinin yemlerde kullanım olanakları. Tekirdağ Ziraat Fakültesi Dergisi. 2018;15(2):73-7. 12. Mankan E. Gastronomide yeni trendleryenilebilir böcekler. Electronic Turkish Studies. 2017;12(3):425-440.
  • 13. İpçak HH, Özüretmen S, Alçiçek A, Özelçam H. Alternatif protein kaynaklarının hayvan beslemede kullanım olanakları. Hayvansal Üretim. 2018;59(1):51-8.
  • 14. Kouřimská L, Adámková A. Nutritional and sensory quality of edible insects. NFS J. 2016;4:22-6.
  • 15. Payne CL, Scarborough P, Rayner M, Nonaka K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. Eur J Clin Nutr. 2016;70(3):285-91.
  • 16. Muslu M. Sağlığın Geliştirilmesi ve Sürdürülebilir Beslenme için Alternatif Bir Kaynak: Yenilebilir böcekler. Gıda Dergisi. 2020;45(5):1009-18. 17. Kulma M, Kouřimská L, Homolková D, Božik M, Plachý V, Vrabec V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J Food Compos Anal. 2020;92:103570.
  • 18. Ordoñez-Araque R, Egas-Montenegro E. Edible insects: A food alternative for the sustainable development of the planet. Int J Gastron Food Sci. 2021;23:100304.
  • 19. Boulos S, Tännler A, Nyström L. Nitrogen-toProtein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Front Nutr. 2020;7(89). 20. Jonas-Levi A, Martinez JJ. The high level of protein content reported in insects for food and feed is overestimated. J Food Compos Anal. 2017;62:184-8. 21. Ravi HK, Degrou A, Costil J, Trespeuch C, Chemat F, Vian MA. Effect of devitalization techniques on the lipid, protein, antioxidant, and chitin fractions of black soldier fly (Hermetia illucens) larvae. Eur Food Res Technol. 2020;246:2549-68.
  • 22. Ghosh S, Haldar P, Mandal DK. Evaluation of nutrient quality of a short-horned grasshopper, Oxya hyla hyla Serville (Orthoptera: Acrididae) in search of new protein source. J Entomol Zool Stud. 2016;4(1):193-7.
  • 23. Aksoy AB, El SN. Geleceğin protein kaynağı: Yenilebilir böcekler. Turk J Agric Food Sci Technol. 2021;9(5):887-96.
  • 24. Stone AK, Tanaka T, Nickerson MT. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J Food Sci Technol. 2019;56(7):3355-3363.
  • 25. Perez-Santaescolastica C, de Pril I, van de Voorde I, Fraeye I. Fatty acid and amino acid profiles of seven edible insects: Focus on lipid class composition and protein conversion factors. Foods. 2023;12(22):4090.
  • 26. Demirci M, Yetim H. İnsan gıdası olarak böcek proteinleri tüketimi ve getirdiği sorunlar. Helal ve Etik Araştırmalar Dergisi. 2021;3(2):11-22.
  • 27. de Castro RJS, Ohara A, Aguilar JGS, Domingues MAF. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trend Food Sci Technol. 2018;76:82-9. 28. Imathiu S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020;18:1-11.
  • 29. Tekiner İH, Darama G, Özatila B, Yetim H. Beslenme ve Gıda Teknolojisi Yönünden Yenilebilir Böcekler. Academic Platform Journal of Halal Lifestyle. 2022;4(1):18-29. 30. Orkusz A. Edible insects versus meat— nutritional comparison: Knowledge of their composition is the key to good health. Nutrients. 2021;13(4):1207. 31. Latunde-Dada GO, Yang W, Vera Aviles M. In vitro iron availability from insects and sirloin beef. J Agric Food Chem. 2016;64:8420–24.
  • 32. Köhler R, Kariuki L, Lambert C, Biesalski HK. Protein, amino acid and mineral composition of some edible insects from Thailand. J Asia Pac Entomol. 2019;22(1):372-8.
  • 33. Mwangi MN, Oonincx DG, Stouten T, Veenenbos M, Melse-Boonstra A, Dicke M, et al. Insects as sources of iron and zinc in human nutrition. Nutr Res Rev. 2018;31(2):248-55. 34. Tang C, Yang D, Liao H, Sun H, Liu C, Wei L, et al. Edible insects as a food source: a review. Food Prod Process Nutr. 2019;1(1):1-13.
  • 35. Ssepuuya G, Smets R, Nakimbugwe D, Van Der Borght M, Claes J. Nutrient composition of the long-horned grasshopper Ruspolia differens Serville: effect of swarming season and sourcing geographical area. Food Chem. 2019;301:125305. 36. Van Huis A. Nutrition and health of edible insects. Curr Opin Clin Nutr Metab Care. 2020;23(3):228-31.
  • 37. Jansson, A. and Berggren, A. Insects as Food – Something for the Future? A report from Future Agriculture. Uppsala, Swedish University of Agricultural Sciences (SLU). 2015;1-36. 38. Roos N, Van Huis A. Consuming insects: are there health benefits? J Insects Food Feed. 2017;3(4):225-9.
  • 39. Tripathi K, Singh A. Chitin, chitosan and their pharmacological activities: A review. Int J Pharm Sci Res. 2018;9(7):2626-35. 40. Stull VJ. Impacts of insect consumption on human health. J Insects Food Feed. 2021;7(5):695-713.
  • 41. Aguilar-Toalá JE, Cruz-Monterrosa RG, Liceaga AM. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. Insects. 2022;13(11):1007. 42. Adegboye ARA, Bawa M, Keith R, Twefik S, Tewfik I. Edible Insects: Sustainable nutrientrich foods to tackle food insecurity and malnutrition. World Nutr. 2021;12(4):176-89.
  • 43. Di Mattia C, Battista N, Sacchetti G, Serafini M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front Nutr. 2019;6:106. 44. Nino MC, Reddivari L, Ferruzzi MG, Liceaga AM. Targeted phenolic characterization and antioxidant bioactivity of extracts from edible Acheta domesticus. Foods. 2021;10(10):2295.
  • 45. Mendoza-Salazar A, Santiago-López L, Torres-Llanez MJ, Hernández-Mendoza A, Vallejo-Cordoba B, Liceaga AM, et al. In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. Fermentation. 2021;7(3):153. 46. Nowakowski AC, Miller AC, Miller ME, Xiao H, Wu X. Potential health benefits of edible insects. Crit Rev Food Sci Nutr. 2022;62(13):3499-508.
  • 47. Ahn MY, Hwang JS, Kim MJ, Park KK. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high-fat diet. Arch Pharm Res. 2016;39:926-36.
  • 48. Kılınç GS, Çelen FN, Bağdatlıoğlu N. Protein Kaynağı Olarak Böcekler. Turkish Journal of Agriculture-Food Science and Technology. 2022;10(3):468-74.
  • 49. Da Silva Lucas AJ, de Oliveira LM, Da Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020;311:126022.
  • 50. Wu Q, Patočka J, Kuča K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10(11):461.
  • 51. Rumbos CI, Karapanagiotidis IT, Mente E, Psofakis P, Athanassiou CG. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci Rep. 2020;10(1):1-10.
  • 52. Lange K, Nakamura Y. Edible insects as a source of food bioactives and their potential health effects. J Food Bioact. 2021;14.
  • 53. Ji YJ, Liu HN, Kong XF, Blachier F, Geng MM, Liu YY, et al. Use of insect powder as a source of dietary protein in early-weaned piglets. J Anim Sci. 2016;94(suppl_3):111-6. 54. Smith J, Doe A, Johnson K. Advances in edible insect research: Global perspectives
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Bengisu Güllü 0009-0003-9404-1435

Aysun Yüksel 0000-0002-6580-0207

Gönderilme Tarihi 14 Şubat 2025
Kabul Tarihi 24 Mart 2025
Yayımlanma Tarihi 11 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 1

Kaynak Göster

APA Güllü, B., & Yüksel, A. (2025). Yenilebilir Böceklerin Besin Değeri ve Sağlığa Etkileri. Balkan Sağlık Bilimleri Dergisi, 4(1), 18-27. https://doi.org/10.61830/balkansbd.1639485

 CC BY-NC 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1nc.svg?ref=chooser-v1

Balkan Sağlık Bilimleri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.