Araştırma Makalesi
BibTex RIS Kaynak Göster

Depth-Based Alteration of Cmic and Nmic in Topsoils under the Spruce Stands

Yıl 2022, , 637 - 650, 15.12.2022
https://doi.org/10.24011/barofd.1202314

Öz

In this study, the variation of characteristics such as organic C, total N, decomposition rate (Corg/Ntotal), microbial biomass C (Cmic) and N (Nmic) of soils under pure oriental spruce (Picea orientalis L.) forest with soil depth were investigated. The research area is located in the Fol Stream Micro Basin within the borders of Vakfikebir and Tonya Districts of Trabzon province. In the study area, randomly 10 sample points were determined to represent the area, and soil sampling was conducted from two different depth levels (0–15 cm and 15–30 cm depth) from these points. For some physical, chemical an microbial analyzes of the soils from the area, a total of 20 soil samples were taken, being 10 from each depth level. As a result of the study, according to the soil depth, % sand, and % silt contents showed statistical differences from each other (P < 0.05). Similarly, organic C, total N, and (Corg/Ntotal) values were found to be statistically different from each other (P < 0.05) according to both depth levels. It was determined that the Cmic contents of the soils varied between 437.40–1315.20 μg g-1 at the 0–15 cm depth level and 194.20–578.20 μg g-1 at the 15-30 cm depth level. The Nmic contents of the soils are on average 88.08 ± 8.08 μg g-1 at the 0–15 cm depth level and 41.17 ± 4.32 μg g-1 at the 15–30 cm depth level. It was revealed that the soils’ Cmic and Nmic contents showed statistical differences (P < 0.05) according to the soil depth. In addition, it was determined that there was a positive and significant correlation between organic C and total N content of soils and Cmic and Nmic. The results obtained in the study show that soil properties that change with soil depth affect Cmic ve Nmic contents.

Teşekkür

Bu makale 23-25 Kasım 2022 tarihleri arasında Ankara'da düzenlenen "5th International Eurasian Conference on Biological and Chemical Sciences"ta sözlü olarak sunulmuştur.

Kaynakça

  • Anderson, J. M. and Ingram, J. S. I. (1996) Tropical Soil Biology and Fertility A Handbook of Methods, Second Edition, Cab International Wallingford, UK, pp. 221
  • Anderson, J. P. E. and Domsch, K. H. (1973). Quantification of bacterial and fungal contribution to soil respiration. Archives of Microbiology, 93(2), 113–127.
  • Aponte, C., Marañón, T. and García, L. V. (2010). Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry, 101(1), 77–92.
  • Arunachalam, A. and Arunachalam, K. (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant and Soil, 223(1), 187–195.
  • Blake, G. R. (1965). Particle density. In: Klute A. (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, Wisconsin, USA, pp. 371–373.
  • Bolat, İ. (2011). Kayın, göknar ve göknar-kayın meşcerelerinde üst toprak ve ölü örtüdeki mikrobiyal biyokütle karbon (Cmic), azot (Nmic), fosfor (Pmic) ve mikrobiyal solunumun mevsimsel değişimi. Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Doktora Tezi (Yayımlanmamış), Bartın, 423 s.
  • Bolat, İ. (2019). Microbial biomass, basal respiration, and microbial indices of soil in diverse croplands in a region of northwestern Turkey (Bartın). Environmental Monitoring and Assessment, 191(11), 1–13.
  • Bolat, İ. and Öztürk, M. (2016). Effects of altitudinal gradients on leaf area index, soil microbial biomass C and microbial activity in a temperate mixed forest ecosystem of Northwestern Turkey. iForest-Biogeosciences and Forestry, 10(1), 334.
  • Bolat, İ., Şensoy, H. and Özer, D. (2015). Short-term changes in microbial biomass and activity in soils under black locust trees (Robinia pseudoacacia L.) in the northwest of Turkey. Journal of Soils and Sediments, 15(11), 2189–2198.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465.
  • Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-total. In: Page, A.L. (ed.) Methods of soil analysis, Part 2 Chemical and Microbiological Properties. SSSA Book series No: 9, Madison, pp. 595–622.
  • Brookes, P. C., Landman, A., Pruden, G. and Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842.
  • Burton, J., Chen, C., Xu, Z. and Ghadiri, H. (2010). Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 10(7), 1267–1277.
  • Cleveland, C. C., Townsend, A. R., Constance, B. C., Ley, R. E. and Schmidt, S. K. (2004). Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints. Biotropica, 36(2), 184–195.
  • Cools, N., Vesterdal, L., De Vos, B., Vanguelova, E. and Hansen, K. (2014). Tree species is the major factor explaining C: N ratios in European forest soils. Forest Ecology and Management, 311, 3–16.
  • Çepel, N. (1995). Orman Ekolojisi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, Üniversite Yayın No. 3886, Sosyal BMYO, Yayın No: 433, İstanbul, 536s.
  • Çepel, N. (1996). Toprak İlmi. İÜ Yayın No 3945, Orman Fakültesi Yayın No: 438, 288 s.
  • Diaz-Ravina, M., Carballas, T. and Acea, M. J. (1988). Microbial biomass and metabolic activity in four acid soils. Soil Biology and Biochemistry, 20(6), 817–823.
  • Ekelund, F., Rønn, R. and Christensen, S. (2001). Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biology and Biochemistry, 33(4-5), 475–481.
  • Fang, C. and Moncrieff, J. B. (2005). The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil, 268(1), 243–253.
  • Fassnacht, K. S. and Gowerr, S. T. (1999). Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin. Biogeochemistry, 45(3), 265–284.
  • Gülçur, F. (1974). Toprağın Fiziksel ve Kimyasal Analiz Metodları, Kutulmuş Matbaası, İ.Ü. Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s.
  • Henrot, J. and Robertson, G. P. (1994). Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 26(1), 111–116.
  • Irmak, A. (1954) Arazide ve Laboratuvarda Toprağın Araştırılması Metodları, İ.Ü. Yayın No. 559, Orman Fakültesi Yayın No. 27, İstanbul, 150 s.
  • Jagadamma, S., Mayes, M. A., Steinweg, J. M. and Schaeffer, S. M. (2014). Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences, 11(17), 4665–4678.
  • Jiang, W., Gong, L., Yang, L., He, S. and Liu, X. (2021). Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 11(1), 1–10.
  • Kaçar, B. (1995). Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. AÜ Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s.
  • Kantarcı MD (2000) Toprak İlmi, İstanbul Üniversitesi Toprak İlmi ve Ekoloji Anabilim Dalı, İstanbul Üniversitesi Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Kara, Ö. and Bolat, İ. (2009). Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9(6), 1151–1155.
  • Kara, Ö., Bolat, İ., Çakıroğlu, K. and Öztürk, M. (2008). Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biology and Fertility of Soils, 45(2), 193–198.
  • Lavahun, M. F. E., Joergensen, R. G. and Meyer, B. (1996). Activity and biomass of soil microorganisms at different depths. Biology and Fertility of Soils, 23(1), 38–42.
  • Lepcha, N. T. and Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 1–14.
  • Lopes, M. M., Salviano, A. A. C., Araujo, A. S. F., Nunes, L. A. P. L. and Oliveira, M. E. (2010). Changes in soil microbial biomass and activity in different Brazilian pastures. Spanish Journal of Agricultural Research, 8(4), 1253–1259.
  • Maithani, K., Tripathi, R. S., Arunachalam, A. and Pandey, H. N. (1996). Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Applied Soil Ecology, 4(1), 31–37.
  • Martikainen, P. J. and Palojärvi, A. (1990). Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 22(6), 797–802.
  • Oktaba, L. and Kusińska, A. (2016). Soil organic matter in afforested post-agricultural soils. Polish Journal of Soil Science, 45(1), 39.
  • Ostrowska, A. and Porębska, G. (2015). Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecological Indicators, 49, 104–109.
  • Pankhurst, C. E., Doube, B. M. and Gupta, V. V. S. R. (1997). Biological indicators of soil health: Synthesis. In: Biological Indicators of Soil Health. Pankhurst, C. E., Doube, B. M., and Gupta, V. V. S. R. (eds.). CAB International, pp. 419–435.
  • Parkinson, D. and Coleman, D. C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems and Environment, 34(1–4), 3–33.
  • Rowell, D. L. (1994) Soil Science Methods and Applications. Longman Scientific and Technical, Singapore.
  • Sharma, P., Rai, S. C., Sharma, R. and Sharma, E. (2004). Effects of land-use change on soil microbial C, N and P in a Himalayan watershed. Pedobiologia, 48(1), 83–92.
  • Singh, J. S., Raghubanshi, A. S., Singh, R. S., and Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338(6215), 499–500.
  • Six, J., Frey, S. D., Thiet, R. K. and Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555–569.
  • Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M. and Francaviglia, R. (2019). Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 177, 227–237.
  • Taylor, J. P., Wilson, B., Mills, M. S. and Burns, R. G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34(3), 387–401.
  • Tracy, B. F. and Frank, D. A. (1998). Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia, 114(4), 556–562.
  • Van Leeuwen, J. P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., De Ruiter, P. C. and Lair, G. J. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology, 79, 14–20.
  • Vance, E. D., Brookes, P. C., and Jenkinson, D. S. (1987a). Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 19(6), 697–702.
  • Vance, E. D., Brookes, P. C. and Jenkinson, D. S. (1987b). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707.
  • Vervaet, H., Massart, B., Boeckx, P., Van Cleemput, O. and Hofman, G. (2002). Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biology and Fertility of Soils, 36(2), 93–101.
  • Vinhal-Freitas, I. C., Corrêa, G. F., Wendling, B., Bobuľská, L. and Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182–190.
  • Wen, L., Lei, P., Xiang, W., Yan, W. and Liu, S. (2014). Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management,328, 150–158.
  • Wright, A. L., Hons, F. M. and Matocha Jr, J. E. (2005). Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Applied Soil Ecology, 29(1), 85–92.
  • Xu, T., Chen, X., Hou, Y. and Zhu, B. (2021). Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau. Plant and Soil, 459(1), 137–153.

Ladin Meşcereleri Üst Topraklarında Derinliğe Göre Cmic ve Nmic 'in Değişimi

Yıl 2022, , 637 - 650, 15.12.2022
https://doi.org/10.24011/barofd.1202314

Öz

Bu çalışmada saf doğu ladini (Picea orientalis L.) ormanı altındaki toprakların özellikle organik C, toplam N, ayrışma oranı (Corg/Ntoplam), mikrobiyal biyokütle C (Cmic) ve N (Nmic) gibi karakteristiklerinin toprak derinliği ile değişimi araştırılmıştır. Araştırma sahası Trabzon ili Vakfıkebir ve Tonya İlçeleri sınırlarında bulunan Fol Deresi Mikro Havzası’nda yer almaktadır. Çalışma alanında alanı temsilen, rastgele 10 adet örnek nokta belirlenmiş ve bu noktalardan farklı iki derinlik kademesinden (0–15 cm ve 15–30 cm derinlik) toprak örneklemesi yapılmıştır. Alandan toprakların bazı fiziksel, kimyasal ve mikrobiyal analizleri için her derinlik kademesinden 10’ar örnek olacak şekilde toplamda 20 adet toprak örneği alınmıştır. Çalışma sonunda toprak derinliğine göre, % kum ve % toz içerikleri istatistiki olarak birbirinden farklılık (P<0,05) göstermiştir. Benzer olarak organik C, toplam N ve (Corg/Ntoplam) değerlerinin her iki derinlik kademesine göre istatistiksel olarak birbirinden farklı (P < 0,05) olduğu ortaya çıkmıştır. Toprakların Cmic içerikleri, 0-15 cm derinlik kademesinde 437,40–1315,20 μg g-1 ve 15-30 cm derinlik kademesinde 194,20–578,20 μg g-1 arasında değişim gösterdiği tespit edilmiştir. Toprakların Nmic içerikleri, 0–15 cm derinlik kademesinde ortalama 88,08  8,08 μg g-1 ve 15–30 cm derinlik kademesinde ortalama 41,17  4,32 μg g-1’dır. Toprakların hem Cmic hem de Nmic içeriklerinin toprak derinliğine göre istatistiksel farklılık (P<0,05) gösterdiği ortaya çıkmıştır. Ayrıca toprakların organik C ve toplam N içeriği ile Cmic ve Nmic arasında pozitif ve anlamlı bir korelasyonun olduğu belirlenmiştir. Çalışmada elde edilen sonuçlar, toprak derinliğine göre değişen toprak özelliklerinin Cmic ve Nmic içerikleri üzerinde etkili olduğunu göstermektedir.

Kaynakça

  • Anderson, J. M. and Ingram, J. S. I. (1996) Tropical Soil Biology and Fertility A Handbook of Methods, Second Edition, Cab International Wallingford, UK, pp. 221
  • Anderson, J. P. E. and Domsch, K. H. (1973). Quantification of bacterial and fungal contribution to soil respiration. Archives of Microbiology, 93(2), 113–127.
  • Aponte, C., Marañón, T. and García, L. V. (2010). Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry, 101(1), 77–92.
  • Arunachalam, A. and Arunachalam, K. (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India. Plant and Soil, 223(1), 187–195.
  • Blake, G. R. (1965). Particle density. In: Klute A. (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, Wisconsin, USA, pp. 371–373.
  • Bolat, İ. (2011). Kayın, göknar ve göknar-kayın meşcerelerinde üst toprak ve ölü örtüdeki mikrobiyal biyokütle karbon (Cmic), azot (Nmic), fosfor (Pmic) ve mikrobiyal solunumun mevsimsel değişimi. Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Doktora Tezi (Yayımlanmamış), Bartın, 423 s.
  • Bolat, İ. (2019). Microbial biomass, basal respiration, and microbial indices of soil in diverse croplands in a region of northwestern Turkey (Bartın). Environmental Monitoring and Assessment, 191(11), 1–13.
  • Bolat, İ. and Öztürk, M. (2016). Effects of altitudinal gradients on leaf area index, soil microbial biomass C and microbial activity in a temperate mixed forest ecosystem of Northwestern Turkey. iForest-Biogeosciences and Forestry, 10(1), 334.
  • Bolat, İ., Şensoy, H. and Özer, D. (2015). Short-term changes in microbial biomass and activity in soils under black locust trees (Robinia pseudoacacia L.) in the northwest of Turkey. Journal of Soils and Sediments, 15(11), 2189–2198.
  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465.
  • Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-total. In: Page, A.L. (ed.) Methods of soil analysis, Part 2 Chemical and Microbiological Properties. SSSA Book series No: 9, Madison, pp. 595–622.
  • Brookes, P. C., Landman, A., Pruden, G. and Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842.
  • Burton, J., Chen, C., Xu, Z. and Ghadiri, H. (2010). Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 10(7), 1267–1277.
  • Cleveland, C. C., Townsend, A. R., Constance, B. C., Ley, R. E. and Schmidt, S. K. (2004). Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints. Biotropica, 36(2), 184–195.
  • Cools, N., Vesterdal, L., De Vos, B., Vanguelova, E. and Hansen, K. (2014). Tree species is the major factor explaining C: N ratios in European forest soils. Forest Ecology and Management, 311, 3–16.
  • Çepel, N. (1995). Orman Ekolojisi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, Üniversite Yayın No. 3886, Sosyal BMYO, Yayın No: 433, İstanbul, 536s.
  • Çepel, N. (1996). Toprak İlmi. İÜ Yayın No 3945, Orman Fakültesi Yayın No: 438, 288 s.
  • Diaz-Ravina, M., Carballas, T. and Acea, M. J. (1988). Microbial biomass and metabolic activity in four acid soils. Soil Biology and Biochemistry, 20(6), 817–823.
  • Ekelund, F., Rønn, R. and Christensen, S. (2001). Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biology and Biochemistry, 33(4-5), 475–481.
  • Fang, C. and Moncrieff, J. B. (2005). The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil, 268(1), 243–253.
  • Fassnacht, K. S. and Gowerr, S. T. (1999). Comparison of the litterfall and forest floor organic matter and nitrogen dynamics of upland forest ecosystems in north central Wisconsin. Biogeochemistry, 45(3), 265–284.
  • Gülçur, F. (1974). Toprağın Fiziksel ve Kimyasal Analiz Metodları, Kutulmuş Matbaası, İ.Ü. Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s.
  • Henrot, J. and Robertson, G. P. (1994). Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 26(1), 111–116.
  • Irmak, A. (1954) Arazide ve Laboratuvarda Toprağın Araştırılması Metodları, İ.Ü. Yayın No. 559, Orman Fakültesi Yayın No. 27, İstanbul, 150 s.
  • Jagadamma, S., Mayes, M. A., Steinweg, J. M. and Schaeffer, S. M. (2014). Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences, 11(17), 4665–4678.
  • Jiang, W., Gong, L., Yang, L., He, S. and Liu, X. (2021). Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China. Scientific Reports, 11(1), 1–10.
  • Kaçar, B. (1995). Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. AÜ Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s.
  • Kantarcı MD (2000) Toprak İlmi, İstanbul Üniversitesi Toprak İlmi ve Ekoloji Anabilim Dalı, İstanbul Üniversitesi Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Kara, Ö. and Bolat, İ. (2009). Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9(6), 1151–1155.
  • Kara, Ö., Bolat, İ., Çakıroğlu, K. and Öztürk, M. (2008). Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biology and Fertility of Soils, 45(2), 193–198.
  • Lavahun, M. F. E., Joergensen, R. G. and Meyer, B. (1996). Activity and biomass of soil microorganisms at different depths. Biology and Fertility of Soils, 23(1), 38–42.
  • Lepcha, N. T. and Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 1–14.
  • Lopes, M. M., Salviano, A. A. C., Araujo, A. S. F., Nunes, L. A. P. L. and Oliveira, M. E. (2010). Changes in soil microbial biomass and activity in different Brazilian pastures. Spanish Journal of Agricultural Research, 8(4), 1253–1259.
  • Maithani, K., Tripathi, R. S., Arunachalam, A. and Pandey, H. N. (1996). Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Applied Soil Ecology, 4(1), 31–37.
  • Martikainen, P. J. and Palojärvi, A. (1990). Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 22(6), 797–802.
  • Oktaba, L. and Kusińska, A. (2016). Soil organic matter in afforested post-agricultural soils. Polish Journal of Soil Science, 45(1), 39.
  • Ostrowska, A. and Porębska, G. (2015). Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecological Indicators, 49, 104–109.
  • Pankhurst, C. E., Doube, B. M. and Gupta, V. V. S. R. (1997). Biological indicators of soil health: Synthesis. In: Biological Indicators of Soil Health. Pankhurst, C. E., Doube, B. M., and Gupta, V. V. S. R. (eds.). CAB International, pp. 419–435.
  • Parkinson, D. and Coleman, D. C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems and Environment, 34(1–4), 3–33.
  • Rowell, D. L. (1994) Soil Science Methods and Applications. Longman Scientific and Technical, Singapore.
  • Sharma, P., Rai, S. C., Sharma, R. and Sharma, E. (2004). Effects of land-use change on soil microbial C, N and P in a Himalayan watershed. Pedobiologia, 48(1), 83–92.
  • Singh, J. S., Raghubanshi, A. S., Singh, R. S., and Srivastava, S. C. (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338(6215), 499–500.
  • Six, J., Frey, S. D., Thiet, R. K. and Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555–569.
  • Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M. and Francaviglia, R. (2019). Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena, 177, 227–237.
  • Taylor, J. P., Wilson, B., Mills, M. S. and Burns, R. G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34(3), 387–401.
  • Tracy, B. F. and Frank, D. A. (1998). Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. Oecologia, 114(4), 556–562.
  • Van Leeuwen, J. P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., De Ruiter, P. C. and Lair, G. J. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology, 79, 14–20.
  • Vance, E. D., Brookes, P. C., and Jenkinson, D. S. (1987a). Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 19(6), 697–702.
  • Vance, E. D., Brookes, P. C. and Jenkinson, D. S. (1987b). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707.
  • Vervaet, H., Massart, B., Boeckx, P., Van Cleemput, O. and Hofman, G. (2002). Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biology and Fertility of Soils, 36(2), 93–101.
  • Vinhal-Freitas, I. C., Corrêa, G. F., Wendling, B., Bobuľská, L. and Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182–190.
  • Wen, L., Lei, P., Xiang, W., Yan, W. and Liu, S. (2014). Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management,328, 150–158.
  • Wright, A. L., Hons, F. M. and Matocha Jr, J. E. (2005). Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Applied Soil Ecology, 29(1), 85–92.
  • Xu, T., Chen, X., Hou, Y. and Zhu, B. (2021). Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau. Plant and Soil, 459(1), 137–153.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Research Articles
Yazarlar

Kamil Çakıroğlu 0000-0001-9057-1576

Ömer Kara 0000-0002-7787-7463

İlyas Bolat 0000-0002-5354-2968

Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çakıroğlu, K., Kara, Ö., & Bolat, İ. (2022). Ladin Meşcereleri Üst Topraklarında Derinliğe Göre Cmic ve Nmic ’in Değişimi. Bartın Orman Fakültesi Dergisi, 24(3), 637-650. https://doi.org/10.24011/barofd.1202314


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com