Araştırma Makalesi
BibTex RIS Kaynak Göster

Physical and Mechanical Properties of Paper Packaging in the Food Industry

Yıl 2023, , 314 - 319, 15.08.2023
https://doi.org/10.24011/barofd.1293298

Öz

Consumers are constantly concerned about the safety of foods containing synthetic preservatives as well as the increasing number of diseases caused by pathogenic and spoilage microorganisms in food nowadays. The hydrophilicity and porous nature of the paper can easily cause the adsorption of water from the environment or food and become a suitable medium for the growth of microorganisms. The main problem with food wrapping paper and cardboard is that their basic properties are not fully understood. Packaging materials that come into contact with food, whose basic properties are determined by paper and cardboard tests, can be used appropriately instead of end-use. Hence, by reducing the risk of pathogens, it can contribute to the existing studies that are researched to prevent the proliferation of microorganisms. These preliminary tests are critical for active packaging, where antimicrobial agents are incorporated into the packaging material, which forms a protective layer through the vapor phase or direct contact with food. Thus, the main resource will be provided for antimicrobial packaging coated with essential oils, antimicrobial packaging with enzymes, antimicrobial packaging with bacteriocin, and antimicrobial packaging with inorganic materials. In this study, basic tests on three food contact paper samples were performed, and the results were compared. According to these results, better burst resistance and tensile strength results are seen in cardboard packaging. On the contrary, index values decreased when compared to the other paper samples. In the water resistance test, the best results were obtained on wrapping papers. Sulphite paper was the paper type with the none of highest resistance, according to the test results. In this rapidly developing technology, it is foreseen that naturally produced or naturally produced biopolymers will not play an important role in reducing environmental waste by combining them with packaging.

Kaynakça

  • Ahari, H., & Soufiani, S. P. (2021). Smart and active food packaging: Insights in novel food packag-ing. Frontiers in Microbiology, 12, 657233. https://doi.org/10.3389/fmicb.2021.657233
  • Aloui, H., Khwaldia, K., Slama, M. B., & Hamdi, M. (2011). Effect of glycerol and coating weight on functional properties of biopolymer-coated paper. Carbohydrate polymers, 86(2), 1063-1072. https://doi.org/10.1016/j.carbpol.2011.06.026
  • Bennett, C. (1988). The control of microbiological problems in the paper industry. International bio-deterioration, 24(4-5), 381-386. https://doi.org/10.1016/0265-3036(88)90024-3
  • Dobre, A. A., Gagiu, V., & Petru, N. (2011). Antimicrobial activity of essential oils against food-borne bacteria evaluated by two preliminary methods. Romanian Biotechnological Letters, 16(6), 119-125.
  • El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate polymers, 124, 337-346. https://doi.org/10.1016/j.carbpol.2015.01.076
  • Gadhave, R. V., Gadhave, C. R., & Dhawale, P. V. (2022). Plastic-Free Bioactive Paper Coatings, Way to Next-Generation Sustainable Paper Packaging Application: A Review. Green and Sustainable Chemistry, 12(2), 9-27. https://doi.org/10.4236/gsc.2022.122002
  • He, Y., Li, H., Fei, X., & Peng, L. (2021). Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of pa-per for food packaging applications. Carbohydrate polymers, 252, 117156. https://doi.org/10.1016/j.carbpol.2020.117156
  • Hladíková, Z., Kejlova, K., Sosnovcova, J., Jirova, D., Vavrouš, A., Janoušek, A., Syčová M. & Špelina, V. (2015). Microbial contamination of paper-based food contact materials with different contents of recycled fiber. Czech Journal of Food Sciences, 33(4), 308-312. https://doi.org/10.17221/645/2014-CJFS
  • Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of food science and technology, 52, 6095-6111. https://doi.org/10.1007/S13197-015-1780-9
  • Karam, L., Jama, C., Dhulster, P., & Chihib, N. E. (2013). Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci, 4(5), 798-821.
  • Nechita, P. (2017). Active-antimicrobial coatings based on silver nanoparticles and natural polymers for paper packaging functionalization. Nordic Pulp & Paper Research Journal, 32(3), 452-458. https://doi.org/10.3183/npprj-2017-32-03-p452-458
  • Rana, M., Mahmud, S., Hossain, M., Rana, M., Kabir, E., Das, A. K., & Roy, R. K. (2019). Bacteriological load in traditional food packaging paper. Journal of Advances in Microbiology, 15(2), 1-9. https://doi.org/10.9734/JAMB/2019/V15I230085
  • Shankar, S., Bang, Y. J., & Rhim, J. W. (2019). Antibacterial LDPE/GSE/Mel/ZnONP composite film-coated wrapping paper for convenience food packaging application. Food Packaging and Shelf Life, 22, 100421. https://doi.org/10.1016/j.fpsl.2019.100421
  • Sofi, S. A., Singh, J., Rafiq, S., Ashraf, U., Dar, B. N., & Nayik, G. A. (2018). A comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science, 14(4), 305-312. https://doi.org/10.2174/1573401313666170609095732
  • Sood, S., & Sharma, C. (2019). Bacteria in Indian food packaging papers and paperboards with various contents of pulp fiber. Food and Nutrition Sciences, 10(04), 349. https://doi.org/10.4236/FNS.2019.104027
  • Suominen, I., Suihko, M. L., & Salkinoja-Salonen, M. (1997). Microscopic study of migration of microbes in food-packaging paper and board. Journal of Industrial Microbiology and Biotechnology, 19, 104-113. https://academic.oup.com/jimb/article/19/2/104/5991526
  • Tanner, F. W., Wheaton, E., & Ball, C. O. (1940). Microbiology of paper and paper-board for use in the food industry. American Journal of Public Health and the Nations Health, 30(3), 256-266. https://doi.org/10.2105/AJPH.30.3.256
  • Yasar, S., Nizamlıoğlu, N. M., Gücüş, M. O., Bildik Dal, A. E., & Akgül, K. (2022). Origanum majorana L. essential oil-coated paper acts as an antimicrobial and antioxidant agent against meat spoilage. ACS omega, 7(10), 9033-9043. https://doi.org/10.1021/acsomega.2c00237
  • Zaidi, S., Vats, M., Kumar, N., Janbade, A., & Gupta, M. K. (2022). Evaluation of food packaging paper for microbial load and storage effect on the microbial activity of paper. Packaging Technology and Science, 35(7), 569-577. https://doi.org/10.1002/pts.2652

Gıda Endüstrisinde Kâğıt Ambalajların Fiziksel ve Mekanik Özellikleri

Yıl 2023, , 314 - 319, 15.08.2023
https://doi.org/10.24011/barofd.1293298

Öz

Günümüzde tüketiciler, gıdalardaki patojenik ve bozulmaya neden olan mikroorganizmaların neden olduğu artan sayıdaki hastalıkların yanı sıra sentetik koruyucular içeren gıdaların güvenliği konusunda sürekli endişe duymaktadır. Kâğıdın hidrofilisitesi ve gözenekli yapısı kolayca ortamdan veya yiyeceklerden suyun adsorpsiyonuna neden olabilir ve mikroorganizmaların büyümesi için uygun bir ortam haline gelebilir. Gıda ambalaj kâğıdı ve kartondaki ana sorun temel özelliklerinin tam anlaşılamamasıdır. Kağıt ve karton testleri ile temel özellikleri belirlenen gıdayla temas eden ambalaj malzemeleri son kullanım yerine uygun kullanım olanağı kazanabilmektedir. Bu sayede patojen riskini azaltarak mikroorganizmaların çoğalmasını önlemek için araştırılan mevcut çalışmalara katkıda bulunulabilir. Buhar fazı veya gıda ile doğrudan temas yoluyla koruyucu bir tabaka oluşturan ambalaj malzemesine antimikrobiyal ajanların dâhil edildiği aktif ambalajlama için bu ön testler kritik öneme sahiptir. Böylece uçucu yağlarla kaplı antimikrobiyal ambalajlar, enzimli antimikrobiyal ambalajlar, bakteriyosinli antimikrobiyal ambalajlar ve inorganik malzemelerle antimikrobiyal ambalajlar için ana kaynak sağlanmış olacaktır.Bu çalışmada gıdayla temas eden 3 farklı kağıt örneğinin temel testleri yapılmış ve sonuçlar kıyaslanmıştır. Bu sonuçlara göre, en iyi patlama direnci, çekme direnci sonuçları karton ambalajda görülmektedir. Ancak diğer kağıt örnekleri ile karşılaştırıldığında indis değerleri daha düşüktür. Suya dayanıklılık testinde en iyi sonuçlar karton ambalajda görülmektedir. Sülfit kağıdı diğerleri ile kıyaslandığında, en yüksek mukavemete sahip olmayan tek kağıt türüdür. Hızla gelişen bu teknolojide, doğal olarak biyopolimer olan veya doğal olarak üretilen biyopolimerlerin ambalaj ile bir araya getirilerek çevresel atıkların azaltılmasında önemli bir rol oynamayacağı öngörülmektedir.

Kaynakça

  • Ahari, H., & Soufiani, S. P. (2021). Smart and active food packaging: Insights in novel food packag-ing. Frontiers in Microbiology, 12, 657233. https://doi.org/10.3389/fmicb.2021.657233
  • Aloui, H., Khwaldia, K., Slama, M. B., & Hamdi, M. (2011). Effect of glycerol and coating weight on functional properties of biopolymer-coated paper. Carbohydrate polymers, 86(2), 1063-1072. https://doi.org/10.1016/j.carbpol.2011.06.026
  • Bennett, C. (1988). The control of microbiological problems in the paper industry. International bio-deterioration, 24(4-5), 381-386. https://doi.org/10.1016/0265-3036(88)90024-3
  • Dobre, A. A., Gagiu, V., & Petru, N. (2011). Antimicrobial activity of essential oils against food-borne bacteria evaluated by two preliminary methods. Romanian Biotechnological Letters, 16(6), 119-125.
  • El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate polymers, 124, 337-346. https://doi.org/10.1016/j.carbpol.2015.01.076
  • Gadhave, R. V., Gadhave, C. R., & Dhawale, P. V. (2022). Plastic-Free Bioactive Paper Coatings, Way to Next-Generation Sustainable Paper Packaging Application: A Review. Green and Sustainable Chemistry, 12(2), 9-27. https://doi.org/10.4236/gsc.2022.122002
  • He, Y., Li, H., Fei, X., & Peng, L. (2021). Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of pa-per for food packaging applications. Carbohydrate polymers, 252, 117156. https://doi.org/10.1016/j.carbpol.2020.117156
  • Hladíková, Z., Kejlova, K., Sosnovcova, J., Jirova, D., Vavrouš, A., Janoušek, A., Syčová M. & Špelina, V. (2015). Microbial contamination of paper-based food contact materials with different contents of recycled fiber. Czech Journal of Food Sciences, 33(4), 308-312. https://doi.org/10.17221/645/2014-CJFS
  • Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of food science and technology, 52, 6095-6111. https://doi.org/10.1007/S13197-015-1780-9
  • Karam, L., Jama, C., Dhulster, P., & Chihib, N. E. (2013). Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci, 4(5), 798-821.
  • Nechita, P. (2017). Active-antimicrobial coatings based on silver nanoparticles and natural polymers for paper packaging functionalization. Nordic Pulp & Paper Research Journal, 32(3), 452-458. https://doi.org/10.3183/npprj-2017-32-03-p452-458
  • Rana, M., Mahmud, S., Hossain, M., Rana, M., Kabir, E., Das, A. K., & Roy, R. K. (2019). Bacteriological load in traditional food packaging paper. Journal of Advances in Microbiology, 15(2), 1-9. https://doi.org/10.9734/JAMB/2019/V15I230085
  • Shankar, S., Bang, Y. J., & Rhim, J. W. (2019). Antibacterial LDPE/GSE/Mel/ZnONP composite film-coated wrapping paper for convenience food packaging application. Food Packaging and Shelf Life, 22, 100421. https://doi.org/10.1016/j.fpsl.2019.100421
  • Sofi, S. A., Singh, J., Rafiq, S., Ashraf, U., Dar, B. N., & Nayik, G. A. (2018). A comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science, 14(4), 305-312. https://doi.org/10.2174/1573401313666170609095732
  • Sood, S., & Sharma, C. (2019). Bacteria in Indian food packaging papers and paperboards with various contents of pulp fiber. Food and Nutrition Sciences, 10(04), 349. https://doi.org/10.4236/FNS.2019.104027
  • Suominen, I., Suihko, M. L., & Salkinoja-Salonen, M. (1997). Microscopic study of migration of microbes in food-packaging paper and board. Journal of Industrial Microbiology and Biotechnology, 19, 104-113. https://academic.oup.com/jimb/article/19/2/104/5991526
  • Tanner, F. W., Wheaton, E., & Ball, C. O. (1940). Microbiology of paper and paper-board for use in the food industry. American Journal of Public Health and the Nations Health, 30(3), 256-266. https://doi.org/10.2105/AJPH.30.3.256
  • Yasar, S., Nizamlıoğlu, N. M., Gücüş, M. O., Bildik Dal, A. E., & Akgül, K. (2022). Origanum majorana L. essential oil-coated paper acts as an antimicrobial and antioxidant agent against meat spoilage. ACS omega, 7(10), 9033-9043. https://doi.org/10.1021/acsomega.2c00237
  • Zaidi, S., Vats, M., Kumar, N., Janbade, A., & Gupta, M. K. (2022). Evaluation of food packaging paper for microbial load and storage effect on the microbial activity of paper. Packaging Technology and Science, 35(7), 569-577. https://doi.org/10.1002/pts.2652
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Endüstri Mühendisliği
Bölüm Research Articles
Yazarlar

Mehmet Onurhan Gücüş 0000-0002-4593-542X

Erken Görünüm Tarihi 9 Ağustos 2023
Yayımlanma Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gücüş, M. O. (2023). Physical and Mechanical Properties of Paper Packaging in the Food Industry. Bartın Orman Fakültesi Dergisi, 25(2), 314-319. https://doi.org/10.24011/barofd.1293298


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com