Araştırma Makalesi
BibTex RIS Kaynak Göster

Aboveground Carbon Stock Estimation Using Airborne LiDAR in Forest Ecosystems

Yıl 2025, Cilt: 27 Sayı: 3, 445 - 463, 15.12.2025
https://doi.org/10.24011/barofd.1798937

Öz

Global climate change, driven by the rapid increase of carbon dioxide (CO₂) and other greenhouse gases in the atmosphere, is causing profound and often irreversible shifts in ecosystems, with forest ecosystems playing a critical role as terrestrial carbon sinks. Forest carbon is a central component of REDD+ and other climate change mitigation programs, and accurate estimation of carbon sequestration is essential for the effectiveness of these strategies. Traditional field-based measurements are often costly, difficult to implement across large areas, and limited in capturing the heterogeneous structure of forests. Consequently, remote sensing technologies, particularly LiDAR (Light Detection and Ranging), have emerged as powerful tools for detailed three-dimensional characterization of forest structure. In this study, terrestrial measurements from 86 sample plots in the Istanbul University-Cerrahpaşa Faculty of Forestry Research Forest were used to estimate aboveground carbon (AGC). A total of 101 structural metrics derived from airborne laser scanning (ALS) data were analyzed, and highly correlated variables were removed, resulting in 25 key predictors. Random Forest regression, combined with leave-one-out cross-validation (LOOCV), was employed to predict AGC. The model achieved high accuracy with R² = 0.76, RMSE = 4.25 ton C/ha, and MAE = 3.48 ton C/ha. Variable importance analysis revealed that height percentiles and canopy relief ratio (CRR), representing vertical structural heterogeneity, were the most influential predictors for AGC estimation. The results demonstrate that ALS data provide a reliable tool for estimating AGC even in forests with diverse stand types and topographic variability. In particular, metrics representing canopy height, canopy cover, and vertical structural complexity are critical for accurate carbon stock modeling. These findings provide a reliable and practical approach for regional and national-scale carbon mapping and support the development of climate change mitigation strategies.

Teşekkür

The terrestrial inventory data used in this study were compiled from the dataset employed in the forest management planning project of the Istanbul University - Cerrahpaşa Faculty of Forestry Education and Research Forest. I would like to express my sincere gratitude to the faculty members of the Department of Forest Management at Istanbul University - Cerrahpaşa Faculty of Forestry for their valuable contributions.

Kaynakça

  • Asner, G. P. (2009). Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters, 4(3), 034009. https://doi.org/10.1088/1748-9326/4/3/034009
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324 Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. Retrieved from http://ci.nii.ac.jp/ncid/BA52417799
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., . . . Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
  • Cheng, F., Ou, G., Wang, M., & Liu, C. (2024). Remote sensing estimation of forest carbon stock based on machine learning algorithms. Forests, 15(4), 681.
  • Clark, D. B., & Kellner, J. R. (2012). Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23(6), 1191–1196. https://doi.org/10.1111/j.1654-1103.2012.01471.x
  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
  • De Oliveira, C. P., Ferreira, R. L. C., Da Silva, J. a. A., De Lima, R. B., Silva, E. A., Da Silva, A. F., . . . De Melo, C. L. S. S. (2021). Modeling and spatialization of biomass and carbon stock using LIDAR metrics in Tropical Dry Forest, Brazil. Forests, 12(4), 473. https://doi.org/10.3390/f12040473
  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185–190. https://doi.org/10.1126/science.263.5144.185
  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., . . . Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  • Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J., Hofton, M. A., . . . Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2–3), 305–319. https://doi.org/10.1016/s0034-4257(01)00281-4
  • Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., & Son, Y. (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 20(6), 2019–2030. https://doi.org/10.1111/gcb.12512
  • Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., . . . Zeng, J. (2022). Global Carbon Budget 2021. Earth System Science Data, 14(4), 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
  • García, M., Riaño, D., Chuvieco, E., & Danson, F. M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816–830. https://doi.org/10.1016/j.rse.2009.11.021
  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2005). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Green Valley International, 2023. LiDAR360 User Guide, GreenValley International Ltd., https://www.greenvalleyintl.com/gvi/web/us/file/EN-User-Guide-LiDAR360.pdf, Erişim: 27.06.2025.
  • Hudak, A. T., Strand, E. K., Vierling, L. A., Byrne, J. C., Eitel, J. U., Martinuzzi, S., & Falkowski, M. J. (2012). Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment, 123, 25–40. https://doi.org/10.1016/j.rse.2012.02.023
  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme.
  • Jian, K., Lu, D., & Li, G. (2025). Modeling Forest Carbon Stock Based on Sample Plots and UAV Lidar Data from Multiple Sites and Examining Its Vertical Characteristics in Wuyishan National Park. Remote Sensing, 17(3), 377. https://doi.org/10.3390/rs17030377
  • Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635–11640. https://doi.org/10.1073/pnas.0901970106
  • Laurin, G. V., Pirotti, F., Callegari, M., Chen, Q., Cuozzo, G., Lingua, E., . . . Papale, D. (2016). Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates. Remote Sensing, 9(1), 18. https://doi.org/10.3390/rs9010018
  • Le Toan, T., Quegan, S., Davidson, M., Balzter, H., Paillou, P., Papathanassiou, K., . . . Ulander, L. (2011). The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment, 115(11), 2850–2860. https://doi.org/10.1016/j.rse.2011.03.020
  • Le Toan, Thuy, Quegan, S., Woodward, I., Lomas, M., Delbart, N., & Picard, G. (2004). Relating radar remote sensing of biomass to modelling of forest carbon budgets. Climatic Change, 67(2–3), 379–402. https://doi.org/10.1007/s10584-004-3155-5
  • Lederer, M. (2012). REDD+ governance. Wiley Interdisciplinary Reviews Climate Change, 3(1), 107–113. https://doi.org/10.1002/wcc.155
  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19–30.
  • Li, H., Hiroshima, T., Li, X., Hayashi, M., & Kato, T. (2024). High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sensing of Environment, 312, 114322. https://doi.org/10.1016/j.rse.2024.114322
  • Lin, Y., Shao, J., Shin, S., Saka, Z., Joseph, M., Manish, R., . . . Habib, A. (2022). Comparative analysis of Multi-Platform, Multi-Resolution, Multi-Temporal LIDAR data for forest inventory. Remote Sensing, 14(3), 649. https://doi.org/10.3390/rs14030649
  • Liu, C., & Shao, Z. F. (2012). Estimation of forest carbon storage based on airborne LiDAR data. Applied Mechanics and Materials, 195–196, 1314–1320. https://doi.org/10.4028/www.scientific.net/amm.195-196.1314
  • Liu, X., Wang, R., Shi, W., Wang, X., & Yang, Y. (2024). Research on estimation model of carbon stock based on airborne LIDAR and feature screening. Sustainability, 16(10), 4133. https://doi.org/10.3390/su16104133
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105. https://doi.org/10.1080/17538947.2014.990526
  • Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2
  • Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., . . . Meir, P. (2009). Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23). https://doi.org/10.1029/2009gl040692
  • Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88–99. https://doi.org/10.1016/s0034-4257(01)00290-5
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., . . . Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609 https://doi.org/10.1109/igarss.2013.6721324
  • Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779–1792. https://doi.org/10.1007/s13762-015-0750-0
  • Soeder, D. J. (2021). Greenhouse gas sources and mitigation strategies from a geosciences perspective. ADVANCES IN GEO-ENERGY RESEARCH, 5(3), 274–285. https://doi.org/10.46690/ager.2021.03.04
  • Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser, C. A., & Cronin, T. W. (2008). Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle. Journal of Climate, 21(15), 3776–3796. https://doi.org/10.1175/2008jcli2038.1
  • Stephens, P. R., Kimberley, M. O., Beets, P. N., Paul, T. S., Searles, N., Bell, A., . . . Broadley, J. (2012). Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment, 117, 348–357. https://doi.org/10.1016/j.rse.2011.10.009
  • Strîmbu, V. F., Næsset, E., Ørka, H. O., Liski, J., Petersson, H., & Gobakken, T. (2023). Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data. Carbon Balance and Management, 18(1). https://doi.org/10.1186/s13021-023-00222-4
  • Tolunay, D. (2019). Biomass factors used to calculate carbon storage of Turkish forests. Forestist, 69(2), 144–155. https://doi.org/10.26650/forestist.2019.110719
  • Valbuena, R., O’Connor, B., Zellweger, F., Simonson, W., Vihervaara, P., Maltamo, M., . . . Coops, N. (2020). Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology & Evolution, 35(8), 656–667. https://doi.org/10.1016/j.tree.2020.03.006
  • White, J. C., Tompalski, P., Coops, N. C., & Wulder, M. A. (2018). Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sensing of Environment, 208, 1–14. https://doi.org/10.1016/j.rse.2018.02.002
  • Wigneron, J., Ciais, P., Li, X., Brandt, M., Canadell, J. G., Tian, F., . . . Fensholt, R. (2024). Global carbon balance of the forest: satellite-based L-VOD results over the last decade. Frontiers in Remote Sensing, 5. https://doi.org/10.3389/frsen.2024.1338618
  • Wulder, M., Coops, N., Hudak, A., Morsdorf, F., Nelson, R., Newnham, G., & Vastaranta, M. (2013). Status and prospects for LiDAR remote sensing of forested ecosystems. Canadian Journal of Remote Sensing, 39(sup1), S1–S5. https://doi.org/10.5589/m13-051
  • Picard, N., Saint-André, L., & Henry, M. (2012). Manual for Building Tree Volume and Biomass Allometric Equations: From field measurement to prediction. FAO.
  • Qin, H., Zhou, W., Yao, Y., & Wang, W. (2021). Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LIDAR and hyperspectral data. Remote Sensing, 13(24), 4969. https://doi.org/10.3390/rs13244969
  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., . . . Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108
  • Shi, Y., Wang, Z., Zhang, G., Wei, X., Ma, W., & Yu, H. (2024). Evaluating the research status of the Remote Sensing-Mediated Monitoring of Forest Biomass: A Bibliometric Analysis of WOS. Forests, 15(3), 524. https://doi.org/10.3390/f15030524
  • Silva, C. A., Klauberg, C., De Padua Chaves E Carvalho, S., & Rodriguez, L. C. E. (2013). Estimation of aboveground carbon stocks in Eucalyptus plantations using LIDAR. 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS (pp. 972–974).

Orman Ekosistemlerinde Hava Tabanlı LiDAR ile Toprak Üstü Karbon Stoklarının Tahmini

Yıl 2025, Cilt: 27 Sayı: 3, 445 - 463, 15.12.2025
https://doi.org/10.24011/barofd.1798937

Öz

Küresel iklim değişikliği, atmosferdeki karbondioksit (CO₂) ve diğer sera gazlarının hızla artışıyla ekosistemlerde geri dönüşü zor değişimlere yol açmakta, orman ekosistemleri ise bu süreçte karasal karbon yutakları olarak kritik bir rol üstlenir. Orman karbonu, REDD+ ve diğer iklim değişikliğiyle mücadele programlarının temel bileşenini oluşturmakta ve karbon tutma miktarının doğru biçimde hesaplanması, iklim değişikliği stratejilerinin etkinliğini doğrudan etkilemektedir. Geleneksel arazi tabanlı ölçümler, geniş alanlarda uygulanması güç, maliyetli ve orman yapısındaki heterojenliği tam olarak temsil edememeleri nedeniyle sınırlı kalmaktadır. Bu nedenle, uzaktan algılama teknikleri, özellikle LiDAR (Light Detection and Ranging) sistemi, orman yapısını üç boyutlu olarak incelemede giderek daha fazla önem kazanmaktadır. Bu çalışmada, İstanbul Üniversitesi-Cerrahpaşa Orman Fakültesi Araştırma Ormanı’nda 86 örnek alanda yapılan arazi ölçümleri kullanılarak toprak üstü karbon (TÜK) tahmini gerçekleştirilmiştir. ALS (Airborne Laser Scanning) verilerinden türetilen 101 yapısal metrik incelenmiş, yüksek korelasyonlu değişkenler elenerek 25 belirleyici metrik seçilmiştir. Random Forest regresyon modeli ve leave-one-out cross-validation (LOOCV) yöntemi ile TÜK tahminleri yapılmıştır. Model, belirtme katsayısı (R²) = 0,76, kök ortalama kare hata (RMSE) = 4,25 ton C/ha ve ortalama mutlak hata (MAE) = 3,48 ton C/ha performans değerleri ile yüksek doğruluk göstermiştir. Değişken önem analizi, yükseklik yüzdelikleri ve canopy relief ratio (CRR) gibi dikey yapı heterojenliğini temsil eden metriklerin TÜK tahmininde en etkili değişkenler olduğunu ortaya koymuştur. Elde edilen sonuçlar, ALS verisinin farklı meşcere tipleri ve topoğrafik heterojenlik gösteren ormanlarda bile TÜK tahmininde güvenilir bir araç olduğunu doğrulamaktadır. Özellikle yükseklik, örtü kapanma oranı ve dikey yapı heterojenliğini temsil eden metrikler, karbon stoklarının doğru modellenmesinde kritik rol oynamaktadır. Elde edilen sonuçlar, havasal LiDAR verisinin bölgesel ve ulusal ölçekte karbon haritalaması ile iklim değişikliğiyle mücadele stratejilerinin geliştirilmesinde güvenilir bir yöntem sunduğunu göstermektedir.

Teşekkür

Makalede kullanılan yersel envanter verisi, İstanbul Üniversitesi - Cerrahpaşa Orman Fakültesi Eğitim ve Araştırma Ormanı amenajman planı çalışmasında kullanılan veri setinden derlenmiştir. Bu vesileyle, İstanbul Üniversitesi - Cerrahpaşa Orman Fakültesi Orman Amenajmanı Anabilim Dalı öğretim üyelerine değerli katkılarından dolayı teşekkür ederim.

Kaynakça

  • Asner, G. P. (2009). Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters, 4(3), 034009. https://doi.org/10.1088/1748-9326/4/3/034009
  • Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. https://doi.org/10.1126/science.1155121
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324 Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. Retrieved from http://ci.nii.ac.jp/ncid/BA52417799
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., . . . Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/s00442-005-0100-x
  • Cheng, F., Ou, G., Wang, M., & Liu, C. (2024). Remote sensing estimation of forest carbon stock based on machine learning algorithms. Forests, 15(4), 681.
  • Clark, D. B., & Kellner, J. R. (2012). Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23(6), 1191–1196. https://doi.org/10.1111/j.1654-1103.2012.01471.x
  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
  • De Oliveira, C. P., Ferreira, R. L. C., Da Silva, J. a. A., De Lima, R. B., Silva, E. A., Da Silva, A. F., . . . De Melo, C. L. S. S. (2021). Modeling and spatialization of biomass and carbon stock using LIDAR metrics in Tropical Dry Forest, Brazil. Forests, 12(4), 473. https://doi.org/10.3390/f12040473
  • Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185–190. https://doi.org/10.1126/science.263.5144.185
  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., . . . Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  • Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J., Hofton, M. A., . . . Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2–3), 305–319. https://doi.org/10.1016/s0034-4257(01)00281-4
  • Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., & Son, Y. (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 20(6), 2019–2030. https://doi.org/10.1111/gcb.12512
  • Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., . . . Zeng, J. (2022). Global Carbon Budget 2021. Earth System Science Data, 14(4), 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
  • García, M., Riaño, D., Chuvieco, E., & Danson, F. M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816–830. https://doi.org/10.1016/j.rse.2009.11.021
  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023
  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2005). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011
  • Green Valley International, 2023. LiDAR360 User Guide, GreenValley International Ltd., https://www.greenvalleyintl.com/gvi/web/us/file/EN-User-Guide-LiDAR360.pdf, Erişim: 27.06.2025.
  • Hudak, A. T., Strand, E. K., Vierling, L. A., Byrne, J. C., Eitel, J. U., Martinuzzi, S., & Falkowski, M. J. (2012). Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment, 123, 25–40. https://doi.org/10.1016/j.rse.2012.02.023
  • IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme.
  • Jian, K., Lu, D., & Li, G. (2025). Modeling Forest Carbon Stock Based on Sample Plots and UAV Lidar Data from Multiple Sites and Examining Its Vertical Characteristics in Wuyishan National Park. Remote Sensing, 17(3), 377. https://doi.org/10.3390/rs17030377
  • Keith, H., Mackey, B. G., & Lindenmayer, D. B. (2009). Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proceedings of the National Academy of Sciences, 106(28), 11635–11640. https://doi.org/10.1073/pnas.0901970106
  • Laurin, G. V., Pirotti, F., Callegari, M., Chen, Q., Cuozzo, G., Lingua, E., . . . Papale, D. (2016). Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates. Remote Sensing, 9(1), 18. https://doi.org/10.3390/rs9010018
  • Le Toan, T., Quegan, S., Davidson, M., Balzter, H., Paillou, P., Papathanassiou, K., . . . Ulander, L. (2011). The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment, 115(11), 2850–2860. https://doi.org/10.1016/j.rse.2011.03.020
  • Le Toan, Thuy, Quegan, S., Woodward, I., Lomas, M., Delbart, N., & Picard, G. (2004). Relating radar remote sensing of biomass to modelling of forest carbon budgets. Climatic Change, 67(2–3), 379–402. https://doi.org/10.1007/s10584-004-3155-5
  • Lederer, M. (2012). REDD+ governance. Wiley Interdisciplinary Reviews Climate Change, 3(1), 107–113. https://doi.org/10.1002/wcc.155
  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19–30.
  • Li, H., Hiroshima, T., Li, X., Hayashi, M., & Kato, T. (2024). High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sensing of Environment, 312, 114322. https://doi.org/10.1016/j.rse.2024.114322
  • Lin, Y., Shao, J., Shin, S., Saka, Z., Joseph, M., Manish, R., . . . Habib, A. (2022). Comparative analysis of Multi-Platform, Multi-Resolution, Multi-Temporal LIDAR data for forest inventory. Remote Sensing, 14(3), 649. https://doi.org/10.3390/rs14030649
  • Liu, C., & Shao, Z. F. (2012). Estimation of forest carbon storage based on airborne LiDAR data. Applied Mechanics and Materials, 195–196, 1314–1320. https://doi.org/10.4028/www.scientific.net/amm.195-196.1314
  • Liu, X., Wang, R., Shi, W., Wang, X., & Yang, Y. (2024). Research on estimation model of carbon stock based on airborne LIDAR and feature screening. Sustainability, 16(10), 4133. https://doi.org/10.3390/su16104133
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105. https://doi.org/10.1080/17538947.2014.990526
  • Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2
  • Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., . . . Meir, P. (2009). Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23). https://doi.org/10.1029/2009gl040692
  • Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88–99. https://doi.org/10.1016/s0034-4257(01)00290-5
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., . . . Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609 https://doi.org/10.1109/igarss.2013.6721324
  • Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 12(5), 1779–1792. https://doi.org/10.1007/s13762-015-0750-0
  • Soeder, D. J. (2021). Greenhouse gas sources and mitigation strategies from a geosciences perspective. ADVANCES IN GEO-ENERGY RESEARCH, 5(3), 274–285. https://doi.org/10.46690/ager.2021.03.04
  • Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser, C. A., & Cronin, T. W. (2008). Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle. Journal of Climate, 21(15), 3776–3796. https://doi.org/10.1175/2008jcli2038.1
  • Stephens, P. R., Kimberley, M. O., Beets, P. N., Paul, T. S., Searles, N., Bell, A., . . . Broadley, J. (2012). Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment, 117, 348–357. https://doi.org/10.1016/j.rse.2011.10.009
  • Strîmbu, V. F., Næsset, E., Ørka, H. O., Liski, J., Petersson, H., & Gobakken, T. (2023). Estimating biomass and soil carbon change at the level of forest stands using repeated forest surveys assisted by airborne laser scanner data. Carbon Balance and Management, 18(1). https://doi.org/10.1186/s13021-023-00222-4
  • Tolunay, D. (2019). Biomass factors used to calculate carbon storage of Turkish forests. Forestist, 69(2), 144–155. https://doi.org/10.26650/forestist.2019.110719
  • Valbuena, R., O’Connor, B., Zellweger, F., Simonson, W., Vihervaara, P., Maltamo, M., . . . Coops, N. (2020). Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology & Evolution, 35(8), 656–667. https://doi.org/10.1016/j.tree.2020.03.006
  • White, J. C., Tompalski, P., Coops, N. C., & Wulder, M. A. (2018). Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests. Remote Sensing of Environment, 208, 1–14. https://doi.org/10.1016/j.rse.2018.02.002
  • Wigneron, J., Ciais, P., Li, X., Brandt, M., Canadell, J. G., Tian, F., . . . Fensholt, R. (2024). Global carbon balance of the forest: satellite-based L-VOD results over the last decade. Frontiers in Remote Sensing, 5. https://doi.org/10.3389/frsen.2024.1338618
  • Wulder, M., Coops, N., Hudak, A., Morsdorf, F., Nelson, R., Newnham, G., & Vastaranta, M. (2013). Status and prospects for LiDAR remote sensing of forested ecosystems. Canadian Journal of Remote Sensing, 39(sup1), S1–S5. https://doi.org/10.5589/m13-051
  • Picard, N., Saint-André, L., & Henry, M. (2012). Manual for Building Tree Volume and Biomass Allometric Equations: From field measurement to prediction. FAO.
  • Qin, H., Zhou, W., Yao, Y., & Wang, W. (2021). Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LIDAR and hyperspectral data. Remote Sensing, 13(24), 4969. https://doi.org/10.3390/rs13244969
  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., . . . Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108
  • Shi, Y., Wang, Z., Zhang, G., Wei, X., Ma, W., & Yu, H. (2024). Evaluating the research status of the Remote Sensing-Mediated Monitoring of Forest Biomass: A Bibliometric Analysis of WOS. Forests, 15(3), 524. https://doi.org/10.3390/f15030524
  • Silva, C. A., Klauberg, C., De Padua Chaves E Carvalho, S., & Rodriguez, L. C. E. (2013). Estimation of aboveground carbon stocks in Eucalyptus plantations using LIDAR. 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS (pp. 972–974).
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Biyokütlesi ve Biyoürünleri, Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Tufan Demirel 0000-0003-1591-1002

Gönderilme Tarihi 7 Ekim 2025
Kabul Tarihi 18 Kasım 2025
Erken Görünüm Tarihi 2 Aralık 2025
Yayımlanma Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 3

Kaynak Göster

APA Demirel, T. (2025). Orman Ekosistemlerinde Hava Tabanlı LiDAR ile Toprak Üstü Karbon Stoklarının Tahmini. Bartın Orman Fakültesi Dergisi, 27(3), 445-463. https://doi.org/10.24011/barofd.1798937


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com