Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi (UNFCCC)’ne taraf olan ülkelerin her biri karbon stok gelişim düzeyini belirlemek amacıyla kendi ülkeleri için çeşitli ulusal raporlar hazırlamak ve iletmekle yükümlüdür. Bu amaçla kullanılan odunsu biyokütlenin hesabında genel kabul görmüş iki yaklaşım bulunmaktadır. Birincisi, allometrik eşitlikler, ikincisi ise biyokütle belirlemesinde Biyokütle Genişletme Faktörleri (BEF) ya da Biyokütle Çevirme ve Genişletme Faktörlerinin (BCEF) kullanımıdır. Türkiye’de zaman içinde çeşitli araştırmacılar tarafından BEF ve BCEF değerleri hesaplanmıştır. Fakat bu katsayılar genellikle türetilmiş tablo değerlerinden elde edilmiştir. Bu çalışmada ise Türkiye’nin önemli iğne yapraklı türleri için ağaç bileşenlerine ait BEF ve BCEF katsayıları arazi verilerinden elde edilen gerçek ölçüm değerleri kullanılarak belirlenmiştir. Ayrıca ibre kuru madde içeriği (LDMC) ve odun yoğunluk değerleri de (WD) hesaplanmıştır. Toprak üstü ortalama BEF değeri iğne yapraklı ağaçlar için 1,374 olarak belirlenmiştir.
1. Aholoukpe, H., Dubos, B., Flori, A., Deleporte, P., Amajdi, G., Choette, J.L., Blavet, D. (2013). Estimating above ground biomass of oil palm: Allometric equations for estimating frond biomass. Forest ecology and management 292:122-129.
2. Ali, A. M., Darvishzadeh, R., Skidmore, A. K., van Duren, I., Heiden, U., & Heurich, M. (2016). Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. International journal of applied earth observation and geoinformation, 45, 66-76.
3. Blujdea, V.N.B., Pilli, R., Dutca, I., Ciuvat, L., Abrudan, I.V. (2012). Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest ecology and management 264:172-184.
4. ÇOB (2006). Arazi Kullanımı, Arazi Kullanım Değişikliği ve Ormancılık (LULUCF) Çalışma Grubu Raporu, Ankara
5. Durkaya A, Durkaya, B., Ulu Say, Ş. (2016). Below-and above ground biomass distribution of young Scots pines from plantations and natural stands. BOSQUE 37(3): 509-518, 2016 DOI: 10.4067/S0717-92002016000300008.
6. Durkaya, A., Durkaya, B., Makineci, E., Orhan, İ. (2015). Turkish Pines’ Aboveground Biomass and Carbon Storage Relationships. Fresenius Environmental Bulletin Vol:24 (11), pp. 3573-3583.
7. Durkaya, B., Durkaya A., Kocaman M. (2017). Carbon stock change; Bolu Sarıalan forest enterprise. Bartın Orman Fakültesi Dergisi, 19(1), 268-275.
8. Dutca, I., Abrudan, I. V., Stancioiu, P. T., & Blujdea, V. (2010). Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 286.
9. Durkaya, B., Durkaya, A., Makineci, E., Karabürk, T. (2013). Estımatıng Above-Ground Bıomass and Carbon Stock of Indıvıdual Trees in Uneven-Aged Uludag Fir Stands. Fresenius Environmental Bulletin. Vol:22 (2), pp. 428-434.
10. Durkaya, B., Durkaya, A., Makineci, E., Ülküdür,M (2013). Estimation of Above-Ground Biomass and sequestered Carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest-Biogeosciences and Forestry. 6:278-284. DOI:10.3832/ifor0899-006.
11. Durkaya, B., Durkaya, A., Onal, G., Kaptan, S. (2018). Evaluation of the effects of various factors on aboveground and belowground biomass storage capacity of Rhododendron ponticum. BOSQUE, 39(1), 95-106.
12. Durkaya, B.,Varol, T., Durkaya, A. (2014). Determination of carbon stock changes: biomass models or biomass expansion factors. Fresenius Environmental Bulletin. Vol:23 (3), pp. 774-781.
13. Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., ... & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69-83.
14. Güner, S. T., Çömez, A. (2017). Biomass Equations And Changes in Carbon Stock in Afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) Stands in Turkey. Fresenius Environmental Bulletin, 26(3), 2368-2379.
15. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., ... & Lienkaemper, G. W. (1986). Ecology of coarse woody debris in temperate ecosystems. In Advances in ecological research (Vol. 15, pp. 133-302). Academic Press.
16. Illa, E., Ninot, J. M., Anadon-Rosell, A., & Oliva, F. (2017). The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobotanica, 52(2), 199-215.
17. IPCC (2003). Good practice guidance for land use, land-use change and forestry.
18. IPCC (2006). Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme.
19. Jagodziński, A. M., Zasada, M., Bronisz, K., Bronisz, A., & Bijak, S. (2017). Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management, 384, 208-220.
20. Luo, Y., Zhang, X., Wang, X., & Ren, Y. (2014). Dissecting variation in biomass conversion factors across China’s forests: implications for biomass and carbon accounting. PloS one, 9(4), e94777.
21. Mahmood, H., Siddique, M. R. H., Islam, S. Z., Abdullah, S. R., Matieu, H., Iqbal, M. Z., & Akhter, M. (2020). Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Research, 31(4), 1235-1245.
22. Marklund, L. G., & Schoene, D. I. E. T. E. R. (2006). Global assessment of growing stock, biomass and carbon stock. Forest Resources Assessment Programme Working paper, 106.
23. Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., Lang, M., Achten, W.M.J., Thivolle-Cazat, A., Bronisz, K., Merganič, J., Decuyper, M., Alberdi, I., Astrup, R., Mohren, F., Hasenauer, H., (2016). Comparison of carbon estimation methods for European forests. For. Ecol. Manage. 361, 397–420.
24. Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., ... & Merganič, J. (2016). Comparison of carbon estimation methods for European forests. Forest Ecology and Management, 361, 397-420.
25. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., ... & Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-use change and forestry.
26. Poorter, H., Jagodzinski, A. M., Ruiz‐Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., ... & Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208(3), 736-749.
27. Shipley, B., Vu, T. T. (2002). Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2), 359-364.
28. Tolunay, D. (2012). Bolu-Aladağ’daki genç sarıçam meşcereleri için oluşturulan bitkisel kütle denklemleri ve katsayıları. Journal of the Faculty of Forestry Istanbul University| İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(2), 97-111.
29. Zhang, B., Lu, X., Jiang, J., DeAngelis, D. L., Fu, Z., & Zhang, J. (2017). Similarity of plant functional traits and aggregation pattern in a subtropical forest. Ecology and evolution, 7(12), 4086-4098.
F-BCEF Calculations for Turkey's Impotant Coniferous Species
Countries that are parties to the United Nations Framework Convention on Climate Change (UNFCCC) are obliged to prepare and deliver various national reports in order to determine the level of carbon stock development of the situation in their countries. There are two generally accepted approaches to calculate the woody biomass used for this purpose. The first is the allometric equations, the second is the use of Biomass Expansion Factors (BEF) or Biomass Conversion and Expansion Factors (BCEF) in biomass determination. BEF and BCEF values are calculated by various researchers over time in Turkey. However, these coefficients are generally obtained from derived table values. In this study, BEF and BCEF coefficients belonging to the tree components were determined using real measurement values obtained from plot data for important coniferous species of Turkey. In addition, leaf dry matter content (LDMC) and wood density values (WD) were also calculated. The average above ground BEF value was determined as 1.374 for coniferous trees.
1. Aholoukpe, H., Dubos, B., Flori, A., Deleporte, P., Amajdi, G., Choette, J.L., Blavet, D. (2013). Estimating above ground biomass of oil palm: Allometric equations for estimating frond biomass. Forest ecology and management 292:122-129.
2. Ali, A. M., Darvishzadeh, R., Skidmore, A. K., van Duren, I., Heiden, U., & Heurich, M. (2016). Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. International journal of applied earth observation and geoinformation, 45, 66-76.
3. Blujdea, V.N.B., Pilli, R., Dutca, I., Ciuvat, L., Abrudan, I.V. (2012). Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest ecology and management 264:172-184.
4. ÇOB (2006). Arazi Kullanımı, Arazi Kullanım Değişikliği ve Ormancılık (LULUCF) Çalışma Grubu Raporu, Ankara
5. Durkaya A, Durkaya, B., Ulu Say, Ş. (2016). Below-and above ground biomass distribution of young Scots pines from plantations and natural stands. BOSQUE 37(3): 509-518, 2016 DOI: 10.4067/S0717-92002016000300008.
6. Durkaya, A., Durkaya, B., Makineci, E., Orhan, İ. (2015). Turkish Pines’ Aboveground Biomass and Carbon Storage Relationships. Fresenius Environmental Bulletin Vol:24 (11), pp. 3573-3583.
7. Durkaya, B., Durkaya A., Kocaman M. (2017). Carbon stock change; Bolu Sarıalan forest enterprise. Bartın Orman Fakültesi Dergisi, 19(1), 268-275.
8. Dutca, I., Abrudan, I. V., Stancioiu, P. T., & Blujdea, V. (2010). Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 286.
9. Durkaya, B., Durkaya, A., Makineci, E., Karabürk, T. (2013). Estımatıng Above-Ground Bıomass and Carbon Stock of Indıvıdual Trees in Uneven-Aged Uludag Fir Stands. Fresenius Environmental Bulletin. Vol:22 (2), pp. 428-434.
10. Durkaya, B., Durkaya, A., Makineci, E., Ülküdür,M (2013). Estimation of Above-Ground Biomass and sequestered Carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest-Biogeosciences and Forestry. 6:278-284. DOI:10.3832/ifor0899-006.
11. Durkaya, B., Durkaya, A., Onal, G., Kaptan, S. (2018). Evaluation of the effects of various factors on aboveground and belowground biomass storage capacity of Rhododendron ponticum. BOSQUE, 39(1), 95-106.
12. Durkaya, B.,Varol, T., Durkaya, A. (2014). Determination of carbon stock changes: biomass models or biomass expansion factors. Fresenius Environmental Bulletin. Vol:23 (3), pp. 774-781.
13. Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., ... & Navas, M. L. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152(1), 69-83.
14. Güner, S. T., Çömez, A. (2017). Biomass Equations And Changes in Carbon Stock in Afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) Stands in Turkey. Fresenius Environmental Bulletin, 26(3), 2368-2379.
15. Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., ... & Lienkaemper, G. W. (1986). Ecology of coarse woody debris in temperate ecosystems. In Advances in ecological research (Vol. 15, pp. 133-302). Academic Press.
16. Illa, E., Ninot, J. M., Anadon-Rosell, A., & Oliva, F. (2017). The role of abiotic and biotic factors in functional structure and processes of alpine subshrub communities. Folia Geobotanica, 52(2), 199-215.
17. IPCC (2003). Good practice guidance for land use, land-use change and forestry.
18. IPCC (2006). Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme.
19. Jagodziński, A. M., Zasada, M., Bronisz, K., Bronisz, A., & Bijak, S. (2017). Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management, 384, 208-220.
20. Luo, Y., Zhang, X., Wang, X., & Ren, Y. (2014). Dissecting variation in biomass conversion factors across China’s forests: implications for biomass and carbon accounting. PloS one, 9(4), e94777.
21. Mahmood, H., Siddique, M. R. H., Islam, S. Z., Abdullah, S. R., Matieu, H., Iqbal, M. Z., & Akhter, M. (2020). Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Research, 31(4), 1235-1245.
22. Marklund, L. G., & Schoene, D. I. E. T. E. R. (2006). Global assessment of growing stock, biomass and carbon stock. Forest Resources Assessment Programme Working paper, 106.
23. Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., Lang, M., Achten, W.M.J., Thivolle-Cazat, A., Bronisz, K., Merganič, J., Decuyper, M., Alberdi, I., Astrup, R., Mohren, F., Hasenauer, H., (2016). Comparison of carbon estimation methods for European forests. For. Ecol. Manage. 361, 397–420.
24. Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., ... & Merganič, J. (2016). Comparison of carbon estimation methods for European forests. Forest Ecology and Management, 361, 397-420.
25. Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., ... & Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-use change and forestry.
26. Poorter, H., Jagodzinski, A. M., Ruiz‐Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., ... & Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208(3), 736-749.
27. Shipley, B., Vu, T. T. (2002). Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 153(2), 359-364.
28. Tolunay, D. (2012). Bolu-Aladağ’daki genç sarıçam meşcereleri için oluşturulan bitkisel kütle denklemleri ve katsayıları. Journal of the Faculty of Forestry Istanbul University| İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(2), 97-111.
29. Zhang, B., Lu, X., Jiang, J., DeAngelis, D. L., Fu, Z., & Zhang, J. (2017). Similarity of plant functional traits and aggregation pattern in a subtropical forest. Ecology and evolution, 7(12), 4086-4098.
Toplam 29 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
Türkçe
Konular
Orman Endüstri Mühendisliği
Bölüm
Biodiversity, Environmental Management and Policy, Sustainable Forestry
Durkaya, B., Durkaya, A., & Kaptan, S. (2020). Türkiye’nin Önemli İğne Yapraklı Türleri İçin BEF-BCEF Hesaplamaları. Bartın Orman Fakültesi Dergisi, 22(3), 1053-1060. https://doi.org/10.24011/barofd.806310