Araştırma Makalesi
BibTex RIS Kaynak Göster

Ayçiçek Kafasının Yongalevha Endüstrisinde Kullanılabilme Olanakları

Yıl 2020, Cilt: 22 Sayı: 2, 485 - 499, 15.08.2020

Öz

Bu çalışmada, ayçiçek üretimi sonrası tarlada atık kalan ayçiçek tablasının hammadde olarak yonga levha üretimine uygunluğu araştırılmıştır. Çalışmada belirli oranlarda kokar ağaç (Ailanthus altissima (Mill.) Swingle) odunu ve ayçiçek tablası içeren 5 farklı levha üretilmiştir. Aynı zamanda kullanılan hammaddelerin kimyasal özellikleri ve yonga levhaların çeşitli kalite özelliklerine de (fiziksel, mekanik, yüzey özellikleri ve formaldehit emisyonu) bakılmıştır. Son olarak da elde edilen veriler değerlendirilerek yonga levhaların çeşitli kullanım yerlerinde özellikle de mobilya ve genel kullanım için uygunluğu ilgili standartlara bakılarak değerlendirilmiştir. Kimyasal analizlerden elde edilen verilen verilerin değerlendirilmesi sonucunda tüm çözünürlük değerleri, pH ve kül değerlerinin ayçiçek tablasında kokar ağaca odununa göre daha yüksek olduğu belirlenmiştir. Fakat holoselüloz, selüloz, hemizelüloz ve lignin miktarlarının ise kokar ağaç odununda ayçiçek tablasına göre daha yüksek olduğu tespit edilmiştir. Yapılan çalışmalardan elde edilen verilerin istatistiksel olarak değerlendirilmesi sonucu yonga levhaların üretiminde % 10 ayçiçek kafası kullanılması yonga levhaların teknolojik özelliklerini etkilememiştir. % 20, % 30 ve % 100 ayçiçek tablası kullanımı eğilme direnci, elastikiyet modülü ve yüzeye dik çekme direncini olumsuz yönde etkilemiştir. Buna rağmen 2 ve 24 saatlik kalınlığına şişme değerleri ve formaldehit emisyonunu ise olumlu yönde etkilemiştir. Son olarak ise levhaların yüzey özelliklerine (ortalama pürüzlülük, en büyük pürüzlülük ve on nokta pürüzlülüğü) bakıldığında ayçiçek tablası kullanım oranın artmasına paralel olarak pürüzlülük değerlerinin arttığı tespit edilmiştir.

Destekleyen Kurum

Artvin Çoruh Üniversitesi

Proje Numarası

2016.F11.02.05

Teşekkür

Bu çalışma, Artvin Çoruh Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü’nün 2016.F11.02.05 Nolu projesi tarafından desteklenmiştir.

Kaynakça

  • 1. Akbulut, T. (1995). Çeşitli Faktörlerin Yatay Preslenmiş Yonga levhaların Özellikleri Üzerine Etkisi, Doktora Tezi, İstanbul Üniversitesi İstanbul, Türkiye, 132 s.
  • 2. Alma, M.H., Kalaycıoğlu, H., Bektaş, İ., Tutuş, A. (2005). Properties of cotton carpel based particleboards. Industrial Crops and Products, 22(2): 141-149.
  • 3. Almeida, R. R., Del Menezzi, C. H. S., Teixeira, D. E. (2002). Utilization of the coconut shell of babaçu (Orbignya sp.) to produce cement-bonded particleboard. Bioresource Technology, 85(2), 159-163.
  • 4. Aydın, I. (2003). Çeşitli Ağaç Türlerinden Elde Edilen Kaplamaların Islanabilme Yeteneği ve Yapışma Direnci Üzerine Bazı Üretim Şartlarının Etkileri, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 300 s. 5. Ayrilmiş, N., Wınandy, J.E. (2009). Effect of heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard. Materials and Manufacturing Process, 24: 594-599.
  • 6. Baharoğlu, M. (2010). Ağaç Türü, Parafin Kullanım Miktarı ve Uygulama Şeklinin Yonga levhanın Fiziksel ve Mekanik Özellikleri Üzerine Etkileri, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 155 s.
  • 7. Bardak, S., Nemli, G., Sarı, B., Baharoğlu, M., Zekoviç, E. (2010). Manufacture and properties of particleboard composite from waste sanding dusts. High Temparature Materials and Processes, 29(3): 159-167.
  • 8. Bardak, S. (2014). Kokar Ağaç (Ailanthus altissima (Mill.) Swingle) Odununun Yonga levha Endüstrisinde Değerlendirilebilme İmkanları, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 378 s.
  • 9. Bardak, S., Nemli, G., Tiryaki, S. (2017). The ınfluence of raw material growth region, anatomical structure and chemical composition of wood on the qualıty propertıes of particleboards. Maderas. Ciencia y tecnologia, 19(3): 363-372.
  • 10. Bardak, T., Sözen, E. (2018). Yonga Levha ve Lif Levhaların Su Alma Davranışlarının Dijital Görüntü Korelasyon (DGK) Yöntemi Ile Karakterize Edilmesi. Bartın Orman Fakültesi Dergisi, 20(3): 525-534.
  • 11. Bariska, M., Pizzi, A. (1986). The interaction of polyflavonoid tannins with wood cell walls. Holzforschung, 40(5): 299-302.
  • 12. Batu, F. (1978). Varyans Analizi,. K.T.Ü Orman Fakültesi Dergisi, 12: 234-235
  • 13. Bektaş, İ., Güler, C., Kalaycıoğlu, H. (2002). Ayçiçeği (Helianthus annuus L.) saplarından üre formaldehit tutkalı ile yonga levha üretimi. KSÜ Fen ve Mühendislik Dergisi, 5(2): 49-55.
  • 14. Bektaş, İ., Güler, C., Kalaycıoğlu, H., Mengeloğlu, F., Nacar, M. (2005). The manufacture of particleboards using sunflower stalks (helianthus annuus l.) and poplar wood (populus alba L.). Journal of Composite Materials, 39(5): 467-473.
  • 15. Borgin, K., Corbett, K. (1974). The hydrophobic properties of wattle bark ekstractives. Wood Science Technology, 8(2) 138-147.
  • 16. Browning, B.L. (1967). Methods of Wood Chemistry, Volume I, John Wiley and Sons Inc., New York, USA.
  • 17. Christiansen, A.W. (1990). How overdrying wood reduces its bonding to phenol formaldeyde adhesives: a critical rewiev of the literature, part 1: The physical responses. Wood and Fiber Science, 22(4): 441-459.
  • 18. DIN 4768. (1990). Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments, concepts and measuring condition. Deutsches Institut for Norming, Berlin Germany.
  • 19. DPT: Ayçiçeği (Helianthus annuus L.) Saplarından Yonga levha Üretimi, DPT projesi, 98K/122160, 1998-2001.
  • 20. EN 120. (1993). Determination of formaldehyde content in fiberboard by using perforator method. Europen Committee for Standardization, Brussels-Belgium.
  • 21. EN 120-1. (1993). Wood based panels, determination of formaldehyde content-extraction method called perforator method. European Committee for Standardization, Brussels-Belgium.
  • 22. E.P.F. (1969). Manipulationsde chimie papetiere, Grenable.
  • 23. Gerardi, V., Mineli, F., Viggiano, D. (1998). Steam treated rice, industry residues as an alternative feedstock for the wood based particleboard industry in Italy. Biomass and Bioenergy, 14(3): 295-299.
  • 24. Göker, Y., Akbulut, T. (1992). Yonga levha ve kontrplağın özelliklerini etkileyen faktörler, “Orenko 92” I. Ulusal Orman Ürünleri Endüstrisi Kongresi, Eylül, Trabzon, Bildiri Metinleri 1. Cilt, 269-287.
  • 25. Grigoriou, A.H., Ntalos, G.A. (2001). The Potantial use of easter stalks as a lignocellusosic resource for particlebords. Industrial Crops and Products, 13(3): 209-218.
  • 26. Grigoriou, A.H. (2003). Waste paper-wood composites bonded with isocyanate. Wood Science Technolgy, 37: 79-89.
  • 27. Güler, C., Bektaş, İ., Kalaycıoğlu, H. (2006). The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten.). Forest Products Journal, 563(4): 56-60.
  • 28. Güler, C., Özen, R. (2004). Some properties of particleboards made from cotton stalks. Holz als Roh-Und Werkstoff. 62(1): 40-43. 29. Jain, N.C., Gupta, R.C., Jain D.K. (1967). Particleboard from groundnut shells, Proceedings of 11th Silviculture Conference, India.
  • 30. Jianying, X., Guenping, H. (2003). Development of binderless particleboard from kenaf core using steam injection pressing. Journal of Wood Scienee, 49(4): 327-332.
  • 31. Kalaycıoğlu, H., Nemli, G. (2006). Producing composite particleboard from kenaf (Hibiscus cannabinus l.) stalks. 24(2): 177-180.
  • 32. Khedari, J., Choroenvai, S., Hirunlabh, J. (2003). New insulating particleboard from durian peel and coconut coir. Bulding and Enviroment, 38(3): 435-441.
  • 33. Khedari, J., Nonkangrob, N., Hirunlabh, J., Teekasap, S. (2004). New lost-cost insulating particleboards from mixture of durian peel and coconut coir. Bulding and Enviroment 39: 59-65.
  • 34. Khristova, P., Yussifou, N., Gabir, S., Glavche, I., Osman, Z. (1998). Particleboards from sunflower stalks and tannin-modified UF resin. Cell. Chem. Technol. 32: 327–337.
  • 35. Kim, S., Kim, H. J., Kim, H. S., Lee, H. H. (2006). Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldeyde resins. Macromolecular Materials and Engineering, 291: 1027-1034.
  • 36. Kollmann, F. (1966). Holzspanwerkstoffe, Holzpanplatten und Holzspanformlange Rohstoffe, Herstellung, Plankosten Qualitatskotrolle Usw, Berlin, Heidelberg, New York.
  • 37. Lehman, W.F., Geimer, R.L. (1974). Properties of structural particleboards from douglas-fir forest residues. Forest Products Journal 24(10): 17-25.
  • 38. Maloney, T.M. (1993). Modern Particleboard and Dry-Process Fiberboard Manufacturing. Hal Leonard Corp, San Francisco, USA, 681.
  • 39. Marshall, S.W., Ifju, G., Johnson, J.A. (1974). The role of ekstractives in the hydrophbic behavior of loblolly pine rhytidome, Wood and Fiber, 5(4): 353-363.
  • 40. Mo, X., Cheng, E., Wang, D., Sun, X. (2003). Physieal properties of medium-density wheat straw particleboard using different adheives. Industrial Crops and Products, 18: 47-53.
  • 41. Nemli, G., Kırcı, H., Serdar, B., Ay, N. (2003). Suitability of kiwi prunings for particleboard manufacturing. Industrial Crops and Products, 17(1): 39-46.
  • 42. Nemli, G., Aydin, A. (2007). Evaluation of the physical and mechanical properties of particleboard made from the needle litter of pinus pinaster ait. Industrial Crops and Products, 26: 252–258.
  • 43. Nemli, G., Demirel, S., Gümüşkaya, E., Aslan, M., Acar, C. (2009). Feasibility of incorporating waste grass clippings (lolium perene l.) in particleboard composites. Waste Management, 29(3): 1129-1131.
  • 44. Ntalos, G.A., Grigoriu, A.H. (2002). Chacterization and utilization of vine prunings as a wood subsitute for particleboard production. Industrial Crops and Products, 16(1): 59-68.
  • 45. Oh, Y.S., Yoo, J.Y. (2011). Properties of particleboard made from chili pepper stalks, Journal of Tropical Forest Science, 23(4): 473-477.
  • 46. Papadopulos, A.N., Hague, J.R.B. (2003). The potential for using flax shive as a lignocellulosic raw material for particleboard. Industrial Crops and Products, 17: 143-147.
  • 47. Papadopulos, A.N., Traboulay E.A., Hill, C.A. (2002). One layer experimental particleboard from coconutchips. Holz als Roh-Und Werkstoff, 60(2): 394-396.
  • 48. Pettersen, R.C. (1984). The Chemical Composition of Wood. In: The Chemistry of Solid Wood. Edited by Rowell, R.M., American Chemical Society.
  • 49. Raffael, E., Dix, B., Okum, J. (2000). Use of spruce tanin as a binder in particleboards and MDF. Holz als Roh- und Werkstoff, 58: 301-305.
  • 50. Sarı, B., Nemli, G., Ayrilmiş, N., Baharoğlu, M., Bardak, S. (2013). The influence of drying temperature of wood particles on the quality properties of particleboard composite. Drying Technology, 31(1): 17-23.
  • 51. TAPPI Standarts. (1992). Official test methods association of the pulp and paper industry. U.S.A.
  • 52. TAPPI T 204 om–98. (2002). One percent sodium hydroxide solubility of wood and pulp. TAPPI Press.
  • 53. TAPPI T 204 cm–97. (2002). Solvent extractives of wood and pulp. TAPPI Press.
  • 54. TAPPI T 207 cm–99. (1999). Water solubility of wood and pulp. TAPPI Press.
  • 55. TAPPI T 222 om–02. (2006). Acid-insoluble lignin in wood and pulp. TAPPI Press.
  • 56. TAPPI T 211 om-85. (1992). Ash in wood and pulp. TAPPI Test Methods, Tappi Press, Atlanta Georgia, Vol I.
  • 57. TS 642. (1999). Kondisyonlama ve/veya deney için standart referans atmosferleri. Türk Standartları Enstitüsü, Ankara.
  • 58. TS 4176. (1984). Odunun fiziksel ve mekanik özelliklerinin tayini için homojen meşcerelerden numune ağacı ve labaratuar numunesi alınması. I. Baskı, TSE, Ankara.
  • 59. TS EN 310. (1993). Wood based panels, determination of modulus of elasticity in bending and bending strength. European Committee for Standardization, Brusselles, Belgium.
  • 60. TS EN 317. (1999). Particleboard and fiberboards, determination of swelling in the thickness after immersion. European Committee for Standardization, Brusselles, Belgium.
  • 61. TS EN 319 (1993). Particleboards and fiberboards, determination of tensile strength perpendicular to the plane of the board. European Committee for Standardization, Brassels, Belgium.
  • 62. TS EN 323/1. (1999). Ahşap esaslı levhalar, birim hacim ağırlığının tayini, Türk Standartları Enstitüsü, Ankara.
  • 63. TS EN 312. (2012). Yonga levhalar-özellikler, Türk Standartları Enstitüsü, Ankara.
  • 64. Turreda, L.D. (1983). Bagasse, wood and wood-bagasse particleboards bonded with urea formaldehyde and polyvinil acetate/lsocynate adhesives. USDA Technology Journal 8(3): 66-78.
  • 65. Wise, E.L., Karz, H.L. (1962). Cellulose and hemicellulose. In Pulp and Paper Science and Technology, Ed: C. Earl Libby, McGray Book Co., New York.
  • 66. Wong, D., Sun, X.S. (2002). Low density particleboard from wheat straw and pith. Industrial Crops and Products, 15(1): 43–50.
  • 67. Yang, H. S., Kim, D. J., Kim, H J. (2003). Rice straw-wood partide composite for sound absorbing wooden the construction materials. Bioresource Technology, 86(2): 117-121.
  • 68. Yasin, M., Bhutto, A. W., Bazmi, A. A., Karim, S. (2010). Efficient utilization of rice-wheat straw to produce value-added composite products, International Journal of Chemicaland Environmental Engineering, 1(2): 136-143.
  • 69. Yusuf, S. (1996). Properties Enhancement of Wood by Cross Lingkink Formation and its Application to The Reconstituted Wood Products. PhD Thesis. Kyoto University. Kyoto, Japan.

Possibilities of Using Sunflower Tray in Particleboard Industry

Yıl 2020, Cilt: 22 Sayı: 2, 485 - 499, 15.08.2020

Öz

In this study, the appropriateness of the remaining sunflower tray in the field after the sunflower production as raw material to the particleboard production was investigated. In the study, 5 different particleboards were produced, which included certain amounts of wood of tree of heaven (Ailanthus altissima (Mill.) Swingle) and sunflower table. At the same time, the chemical properties of the raw materials used and the various quality characteristics of the chips (physical, mechanical, surface properties and formaldehyde emission) were examined. Finally, the obtained data were evaluated and evaluated for the suitability of the chipboards in various places of use, in particular for furniture and general use, according to relevant standards. As a result of the evaluation of the data obtained from chemical analysis, it has been determined that all the solubility values, pH and ash values are higher in the sunflower tray than the wood of tree of heaven. However, the amount of holocellulose, cellulose, hemisellulose and lignin were found to be higher in the wood of tree heaven compared to the sunflower tray. The statistical evaluation of the data obtained as a result of the studies done does not affect the technological characteristics of the chips by using 10% sunflower head in the production of the particleboards. Using 20%, 30% and 100% sunflower tray affected the bending strength, modulus of elasticity, and internal bond strenght to the surface in the negative direction. Despite this, it affected positively the thickness swelling values for 2 and 24 hour immersion and formaldehyde emission..Finally, when looking at the surface properties of the boards (average roughness, maximum roughness and ten point roughness), it was determined that the roughness values increased in parallel with the increase of sunflower tray utilization rate.

Proje Numarası

2016.F11.02.05

Kaynakça

  • 1. Akbulut, T. (1995). Çeşitli Faktörlerin Yatay Preslenmiş Yonga levhaların Özellikleri Üzerine Etkisi, Doktora Tezi, İstanbul Üniversitesi İstanbul, Türkiye, 132 s.
  • 2. Alma, M.H., Kalaycıoğlu, H., Bektaş, İ., Tutuş, A. (2005). Properties of cotton carpel based particleboards. Industrial Crops and Products, 22(2): 141-149.
  • 3. Almeida, R. R., Del Menezzi, C. H. S., Teixeira, D. E. (2002). Utilization of the coconut shell of babaçu (Orbignya sp.) to produce cement-bonded particleboard. Bioresource Technology, 85(2), 159-163.
  • 4. Aydın, I. (2003). Çeşitli Ağaç Türlerinden Elde Edilen Kaplamaların Islanabilme Yeteneği ve Yapışma Direnci Üzerine Bazı Üretim Şartlarının Etkileri, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 300 s. 5. Ayrilmiş, N., Wınandy, J.E. (2009). Effect of heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard. Materials and Manufacturing Process, 24: 594-599.
  • 6. Baharoğlu, M. (2010). Ağaç Türü, Parafin Kullanım Miktarı ve Uygulama Şeklinin Yonga levhanın Fiziksel ve Mekanik Özellikleri Üzerine Etkileri, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 155 s.
  • 7. Bardak, S., Nemli, G., Sarı, B., Baharoğlu, M., Zekoviç, E. (2010). Manufacture and properties of particleboard composite from waste sanding dusts. High Temparature Materials and Processes, 29(3): 159-167.
  • 8. Bardak, S. (2014). Kokar Ağaç (Ailanthus altissima (Mill.) Swingle) Odununun Yonga levha Endüstrisinde Değerlendirilebilme İmkanları, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 378 s.
  • 9. Bardak, S., Nemli, G., Tiryaki, S. (2017). The ınfluence of raw material growth region, anatomical structure and chemical composition of wood on the qualıty propertıes of particleboards. Maderas. Ciencia y tecnologia, 19(3): 363-372.
  • 10. Bardak, T., Sözen, E. (2018). Yonga Levha ve Lif Levhaların Su Alma Davranışlarının Dijital Görüntü Korelasyon (DGK) Yöntemi Ile Karakterize Edilmesi. Bartın Orman Fakültesi Dergisi, 20(3): 525-534.
  • 11. Bariska, M., Pizzi, A. (1986). The interaction of polyflavonoid tannins with wood cell walls. Holzforschung, 40(5): 299-302.
  • 12. Batu, F. (1978). Varyans Analizi,. K.T.Ü Orman Fakültesi Dergisi, 12: 234-235
  • 13. Bektaş, İ., Güler, C., Kalaycıoğlu, H. (2002). Ayçiçeği (Helianthus annuus L.) saplarından üre formaldehit tutkalı ile yonga levha üretimi. KSÜ Fen ve Mühendislik Dergisi, 5(2): 49-55.
  • 14. Bektaş, İ., Güler, C., Kalaycıoğlu, H., Mengeloğlu, F., Nacar, M. (2005). The manufacture of particleboards using sunflower stalks (helianthus annuus l.) and poplar wood (populus alba L.). Journal of Composite Materials, 39(5): 467-473.
  • 15. Borgin, K., Corbett, K. (1974). The hydrophobic properties of wattle bark ekstractives. Wood Science Technology, 8(2) 138-147.
  • 16. Browning, B.L. (1967). Methods of Wood Chemistry, Volume I, John Wiley and Sons Inc., New York, USA.
  • 17. Christiansen, A.W. (1990). How overdrying wood reduces its bonding to phenol formaldeyde adhesives: a critical rewiev of the literature, part 1: The physical responses. Wood and Fiber Science, 22(4): 441-459.
  • 18. DIN 4768. (1990). Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments, concepts and measuring condition. Deutsches Institut for Norming, Berlin Germany.
  • 19. DPT: Ayçiçeği (Helianthus annuus L.) Saplarından Yonga levha Üretimi, DPT projesi, 98K/122160, 1998-2001.
  • 20. EN 120. (1993). Determination of formaldehyde content in fiberboard by using perforator method. Europen Committee for Standardization, Brussels-Belgium.
  • 21. EN 120-1. (1993). Wood based panels, determination of formaldehyde content-extraction method called perforator method. European Committee for Standardization, Brussels-Belgium.
  • 22. E.P.F. (1969). Manipulationsde chimie papetiere, Grenable.
  • 23. Gerardi, V., Mineli, F., Viggiano, D. (1998). Steam treated rice, industry residues as an alternative feedstock for the wood based particleboard industry in Italy. Biomass and Bioenergy, 14(3): 295-299.
  • 24. Göker, Y., Akbulut, T. (1992). Yonga levha ve kontrplağın özelliklerini etkileyen faktörler, “Orenko 92” I. Ulusal Orman Ürünleri Endüstrisi Kongresi, Eylül, Trabzon, Bildiri Metinleri 1. Cilt, 269-287.
  • 25. Grigoriou, A.H., Ntalos, G.A. (2001). The Potantial use of easter stalks as a lignocellusosic resource for particlebords. Industrial Crops and Products, 13(3): 209-218.
  • 26. Grigoriou, A.H. (2003). Waste paper-wood composites bonded with isocyanate. Wood Science Technolgy, 37: 79-89.
  • 27. Güler, C., Bektaş, İ., Kalaycıoğlu, H. (2006). The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten.). Forest Products Journal, 563(4): 56-60.
  • 28. Güler, C., Özen, R. (2004). Some properties of particleboards made from cotton stalks. Holz als Roh-Und Werkstoff. 62(1): 40-43. 29. Jain, N.C., Gupta, R.C., Jain D.K. (1967). Particleboard from groundnut shells, Proceedings of 11th Silviculture Conference, India.
  • 30. Jianying, X., Guenping, H. (2003). Development of binderless particleboard from kenaf core using steam injection pressing. Journal of Wood Scienee, 49(4): 327-332.
  • 31. Kalaycıoğlu, H., Nemli, G. (2006). Producing composite particleboard from kenaf (Hibiscus cannabinus l.) stalks. 24(2): 177-180.
  • 32. Khedari, J., Choroenvai, S., Hirunlabh, J. (2003). New insulating particleboard from durian peel and coconut coir. Bulding and Enviroment, 38(3): 435-441.
  • 33. Khedari, J., Nonkangrob, N., Hirunlabh, J., Teekasap, S. (2004). New lost-cost insulating particleboards from mixture of durian peel and coconut coir. Bulding and Enviroment 39: 59-65.
  • 34. Khristova, P., Yussifou, N., Gabir, S., Glavche, I., Osman, Z. (1998). Particleboards from sunflower stalks and tannin-modified UF resin. Cell. Chem. Technol. 32: 327–337.
  • 35. Kim, S., Kim, H. J., Kim, H. S., Lee, H. H. (2006). Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldeyde resins. Macromolecular Materials and Engineering, 291: 1027-1034.
  • 36. Kollmann, F. (1966). Holzspanwerkstoffe, Holzpanplatten und Holzspanformlange Rohstoffe, Herstellung, Plankosten Qualitatskotrolle Usw, Berlin, Heidelberg, New York.
  • 37. Lehman, W.F., Geimer, R.L. (1974). Properties of structural particleboards from douglas-fir forest residues. Forest Products Journal 24(10): 17-25.
  • 38. Maloney, T.M. (1993). Modern Particleboard and Dry-Process Fiberboard Manufacturing. Hal Leonard Corp, San Francisco, USA, 681.
  • 39. Marshall, S.W., Ifju, G., Johnson, J.A. (1974). The role of ekstractives in the hydrophbic behavior of loblolly pine rhytidome, Wood and Fiber, 5(4): 353-363.
  • 40. Mo, X., Cheng, E., Wang, D., Sun, X. (2003). Physieal properties of medium-density wheat straw particleboard using different adheives. Industrial Crops and Products, 18: 47-53.
  • 41. Nemli, G., Kırcı, H., Serdar, B., Ay, N. (2003). Suitability of kiwi prunings for particleboard manufacturing. Industrial Crops and Products, 17(1): 39-46.
  • 42. Nemli, G., Aydin, A. (2007). Evaluation of the physical and mechanical properties of particleboard made from the needle litter of pinus pinaster ait. Industrial Crops and Products, 26: 252–258.
  • 43. Nemli, G., Demirel, S., Gümüşkaya, E., Aslan, M., Acar, C. (2009). Feasibility of incorporating waste grass clippings (lolium perene l.) in particleboard composites. Waste Management, 29(3): 1129-1131.
  • 44. Ntalos, G.A., Grigoriu, A.H. (2002). Chacterization and utilization of vine prunings as a wood subsitute for particleboard production. Industrial Crops and Products, 16(1): 59-68.
  • 45. Oh, Y.S., Yoo, J.Y. (2011). Properties of particleboard made from chili pepper stalks, Journal of Tropical Forest Science, 23(4): 473-477.
  • 46. Papadopulos, A.N., Hague, J.R.B. (2003). The potential for using flax shive as a lignocellulosic raw material for particleboard. Industrial Crops and Products, 17: 143-147.
  • 47. Papadopulos, A.N., Traboulay E.A., Hill, C.A. (2002). One layer experimental particleboard from coconutchips. Holz als Roh-Und Werkstoff, 60(2): 394-396.
  • 48. Pettersen, R.C. (1984). The Chemical Composition of Wood. In: The Chemistry of Solid Wood. Edited by Rowell, R.M., American Chemical Society.
  • 49. Raffael, E., Dix, B., Okum, J. (2000). Use of spruce tanin as a binder in particleboards and MDF. Holz als Roh- und Werkstoff, 58: 301-305.
  • 50. Sarı, B., Nemli, G., Ayrilmiş, N., Baharoğlu, M., Bardak, S. (2013). The influence of drying temperature of wood particles on the quality properties of particleboard composite. Drying Technology, 31(1): 17-23.
  • 51. TAPPI Standarts. (1992). Official test methods association of the pulp and paper industry. U.S.A.
  • 52. TAPPI T 204 om–98. (2002). One percent sodium hydroxide solubility of wood and pulp. TAPPI Press.
  • 53. TAPPI T 204 cm–97. (2002). Solvent extractives of wood and pulp. TAPPI Press.
  • 54. TAPPI T 207 cm–99. (1999). Water solubility of wood and pulp. TAPPI Press.
  • 55. TAPPI T 222 om–02. (2006). Acid-insoluble lignin in wood and pulp. TAPPI Press.
  • 56. TAPPI T 211 om-85. (1992). Ash in wood and pulp. TAPPI Test Methods, Tappi Press, Atlanta Georgia, Vol I.
  • 57. TS 642. (1999). Kondisyonlama ve/veya deney için standart referans atmosferleri. Türk Standartları Enstitüsü, Ankara.
  • 58. TS 4176. (1984). Odunun fiziksel ve mekanik özelliklerinin tayini için homojen meşcerelerden numune ağacı ve labaratuar numunesi alınması. I. Baskı, TSE, Ankara.
  • 59. TS EN 310. (1993). Wood based panels, determination of modulus of elasticity in bending and bending strength. European Committee for Standardization, Brusselles, Belgium.
  • 60. TS EN 317. (1999). Particleboard and fiberboards, determination of swelling in the thickness after immersion. European Committee for Standardization, Brusselles, Belgium.
  • 61. TS EN 319 (1993). Particleboards and fiberboards, determination of tensile strength perpendicular to the plane of the board. European Committee for Standardization, Brassels, Belgium.
  • 62. TS EN 323/1. (1999). Ahşap esaslı levhalar, birim hacim ağırlığının tayini, Türk Standartları Enstitüsü, Ankara.
  • 63. TS EN 312. (2012). Yonga levhalar-özellikler, Türk Standartları Enstitüsü, Ankara.
  • 64. Turreda, L.D. (1983). Bagasse, wood and wood-bagasse particleboards bonded with urea formaldehyde and polyvinil acetate/lsocynate adhesives. USDA Technology Journal 8(3): 66-78.
  • 65. Wise, E.L., Karz, H.L. (1962). Cellulose and hemicellulose. In Pulp and Paper Science and Technology, Ed: C. Earl Libby, McGray Book Co., New York.
  • 66. Wong, D., Sun, X.S. (2002). Low density particleboard from wheat straw and pith. Industrial Crops and Products, 15(1): 43–50.
  • 67. Yang, H. S., Kim, D. J., Kim, H J. (2003). Rice straw-wood partide composite for sound absorbing wooden the construction materials. Bioresource Technology, 86(2): 117-121.
  • 68. Yasin, M., Bhutto, A. W., Bazmi, A. A., Karim, S. (2010). Efficient utilization of rice-wheat straw to produce value-added composite products, International Journal of Chemicaland Environmental Engineering, 1(2): 136-143.
  • 69. Yusuf, S. (1996). Properties Enhancement of Wood by Cross Lingkink Formation and its Application to The Reconstituted Wood Products. PhD Thesis. Kyoto University. Kyoto, Japan.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Biomaterial Engineering, Bio-based Materials, Wood Science
Yazarlar

Selahattin Bardak 0000-0001-9724-4762

Gökay Nemli 0000-0002-8172-1875

Timuçin Bardak 0000-0002-1403-1049

Hüseyin Peker 0000-0002-7771-6993

Mehmet Özcan Bu kişi benim 0000-0002-1222-2802

Proje Numarası 2016.F11.02.05
Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 2

Kaynak Göster

APA Bardak, S., Nemli, G., Bardak, T., Peker, H., vd. (2020). Ayçiçek Kafasının Yongalevha Endüstrisinde Kullanılabilme Olanakları. Bartın Orman Fakültesi Dergisi, 22(2), 485-499.


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com