Araştırma Makalesi
BibTex RIS Kaynak Göster

Ahşap Yüzeyde Akıllı Nano Biyomimetik Hidrotermal Lokasyonlama

Yıl 2020, Cilt: 22 Sayı: 2, 447 - 456, 15.08.2020

Öz

Bu çalışmanın amacı, ahşap yüzeyde hidrotermal metod kullanılarak nono boyutta fonksiyonlandırma yapmak ve böylelikle, yüzeyin çevre şartlarına karşı akıllı bir yönelim sergilemesini sağlamaktır. Lignoselülozik yüzeyde iki aşamalı oluşturulan fonksiyonlandırma sürecinin ilk kısmında Demirli sülfat heptahidrat (FeSO4·7H2O), Krom (II) klorür (CrCl2), Sodyum hidroksit (NaOH), Etil alkol (EtOH), ve Potasyum nitrat (KNO3) kimyasalları kullanılarak öncelikle anti-UV özellikli bir yüzey elde edilmiştir. Ikinci basamak olan Hidrofobizasyon kısmında ise Oktadesiltriklorosilan (OTS,%95) kullanılmıştır. Yapılan modifikasyon uygulamalarının karakterizasyonunda Fourier dönüşümü kızılötesi spektroskopisi (FTIR), Taramalı elektron mikroskopisi (SEM), X-ışını kırınımı (XRD) ve Enerji dağıtıcı x-ışını (EDX) enstrümental analizleri kullanılmıştır. Fonksiyonlanan yeni yüzeyin su temas açısı (WCA) ölçümleri yapılarak hidrofobisitesi belirlenmiştir. Anti-UV özellikliği ise UV-Vis spektrometresi tespit edilmiştir. Yapılan karakterizasyon çalışmaları sonucunda, hidrotermal olarak yapılan nano fonksiyonlandırmanın başarılı olduğu kanıtlanmıştır. Yeni yüzeyin su temas açısı θγ 128° olarak ölçülmüştür. Dalga boyu aralığının 200-800 nm olduğu alanda anti-UV özellik sergilemiştir. Fonksiyonlandırma sonrası yüzey değişim parametreleri ISO 4287 standardına göre yapılmıştır. Renk değişim oranları ise ISO 2469 (2014) standartlarına uygun olarak belirlenmiştir.

Destekleyen Kurum

Bu çalışma, KSU / BAB tarafından finansal olarak desteklenmiştir.

Proje Numarası

Proje No: 2018/3-20 D.

Kaynakça

  • 1. Amir, M.D., Kurtan, U., Baykal, A., Sozeri, H. (2016). MnFe2O4@ PANI@Ag Heterogeneous Nanocatalyst For Degradation of Industrial Aqueous Organic Pollutants. Journal of Materials Science & Technology, 32, 134–141. 2. Amir, M.D., Unal Sagar, B., Shirsath, E., Geleri, M., Sertkol, M., Baykal, A. (2015). Polyol Synthesis of Mn3+ substituted Fe3O4 Nanoparticles: Cation Distribution, Structural and Electrical Properties. Superlattice Microstructure, 85, 747–760
  • 3. Andersson, S., Serimaa, R., Paakkari, T., Saranpa¨a¨ P., & Pesonen, E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49: 531 –537
  • 4. Barthlott, W., Neinhuis, C. (1997). Purity of The Sacred Lotus, or Escape From Contamination In Biological Surfaces. Planta. 202:1–8.
  • 5. Borysiak, S., Doczekalska, B. (2005b). X-ray Diffraction Study of Pine Wood Treated with NaOH Fibers. Textiles Eastern Europe, 13 pp. 87-89.
  • 6. Chandrapala, J., Oliver, C.M., Kentish, S., Ashokkumar, M. (2013). Use of Power Ultrasound to Improve Extraction and Modify Phase Transitions In Food Processing. Food Reviews International, 29(1): 67-91.
  • 7. 7. De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527.
  • 8. Eichhorn, S.J., Dufresne, A., Aranguren, M. (2010). Review: Current International Research into Cellulose Nanofibers and Nanocomposites. Journal of Materials Science, 45: 1–33.
  • 9. Faux, O., 1991. Classification of Lignins From Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45:21–28.
  • 10. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D. (2002). Super‐Hydrophobic Surfaces: From Natural to Artificial.Advanced Materials, 14: 1857–1860.
  • 11. Fernandes, F.A.N., Linhares, F.E.J., Rodrigues, S. (2008). Ultrasound As Pre-Treatment For Drying of Pineapple. Ultrasonics Sonochemistry, 15(6):1049-1054.
  • 12. Floros, J.D., Liang, H.H., (1994). Acoustically Assisted Diffusion Through Membranes And Biomaterials. Food Technol-Chicago, 48(12): 79-84.
  • 13. Gallego-Juarez, J.A. (2006). Food Drying Process by Power Ultrasound. Ultrasonics, 44: 523-527.
  • 14. Gan, W.T. Gao, L.K. Sun, F.Q. Jin, C.D. Lu, Y. Li J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 322 :565-572.
  • 15. Gao, L., Lu, Y., Zhan, X., Sun, Q. (2015a). A Robust, Anti-Acid, And High-Temperature Humidity-Resistant Superhydrophobic Surface Of Wood Based on A Modified TiO2 Film by Fluoroalkyl Silane. Surface and Coatings Technology, 262: 33-39.
  • 16. Guner, S. Amir, M.D. Geleri, M. Sertkol, M. Baykal, A. (2015). Magneto-optical properties of Mn3+ Substituted Fe3O4 Nanoparticles. Ceramics International, 41,10915–10922.
  • 17. Gust, J., Suwalski, J. (1994). Use Of Mossbauer Spectroscopy To Study Reaction Products Of Polyphenols And Iron Compounds, Corrosion, 50(5): 355-365.
  • 18. Hakkou, M. Pétrissans, M. Zoulalian, A. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation Stability Journal, 89:1–5.
  • 19. Hayoz, P. Peter, W. Rogez, D. (2003). A New Innovative Stabilization Method for the Protection of Natural Wood. Prog. Org. Coat, 48: 297–309.
  • 20. He, Z., Zhao, Z., Yang, F., Yi, S. (2014). Effect of Ultrasound Pretreatment on Wood Prior to Vacuum Drying Maderas: Ciencia y Tecnologia, vol. 16, no. 4, pp. 395–402.
  • 21. ISO 4287, 1997. Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standart Organization.
  • 22. ISO 2469, 2014. Paper, board and pulps measurement of diffuse radiance factor diffuse reflectance factor.
  • 23. Jirous-Rajkovic, V. Bogner, A. & Radovan, D. (2004). The Efficiency of Various Treatments in Protecting Wood Surfaces Against Weathering. Surface and Coatings Technology, 87:15–19. 24. Kozissnik, B., Bohorquez, A.C., Doboson, J., Rinaldi, C. (2013). Magnetic Fuid Hyperthermia: Advances, Challenges and Opportunity. International Journal of Hyperthermia, 29, 706–714.
  • 25. Kumar, M., Gupta, R.C., Sharma, T. (1993). X- ray Diffraction Studies of Acacia and Eucalyptus Wood Chars. Journal of Materials Science. 28: 805.
  • 26. Li, N., Xia, T., Heng, L., Liu, L. (2013). Superhydrophobic Zr-based Metallic Glass Surface with High Adhesive Force. Applied Physics Letters, 102, p. 251603. 27. Liang, C.Y., Marchessault, R.H. (1959). Infrared Spectra of Crystalline Polysaccharides. Hydrogen Bonds in Native Celluloses. Journal of Polymer Science, 37:385–395. 28. Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q. (2014). Improved Weathering Performance and Wettability of Wood Protected by CeO2 Coating Deposited onto The Surface, Holzforschung, 68:345–351.
  • 29. MacLean H, Gardner J.A.F. (1952). Bark Extracts in Adhesives. Pulp Paper Mag. Can. (August) 111– 114.
  • 30. Mary, J.A., Manikandan, A., Chinnaraj, K., Arul, A.S., Neeraja, P. (2015). Comparative Studies of Spinel MnFe2O4 nanostructures: Structural, Morphological, Optical, Magnetic and Catalytic Properties. Journal of Nanoscience and Nanotechnology, 15, 9732–9740.
  • 31. Oka, H., Kataoka, Y., Osada, H., Aruga, Y. (2007). Experimental Study on Electromagnetic Wave Absorbing Control of Coating-Type Magnetic Wood Using A Grooving Process. Journal of Magnetism and Magnetic Materials, 310: E1028–E1029.
  • 32. Oka, H., Hamano, H., Chiba, S. (2004a). Experimental Study on Actuation Functions of Coating-Type Magnetic. Journal of Magnetism and Magnetic Materials, 272: E1693–E1694.
  • 33. Oka, H., Hojo, A., Seki, K., Takashiba, T. (2002a). Wood Construction and Magnetic Characteristics of Impregnated Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 239: 617–619.
  • 34. Oka, H., Narita, K., Osada, H., Seki, K. (2002b). Experimental Results on Indoor Electromagnetic Wave Absorber Using Magnetic Wood. Journal of Applied Physics, 91: 7008–010.
  • 35. Oka, H., Tokuta, H., Namizaki, Y., Sekino N. (2004b). Effects of Humidity on The Magnetic and Woody Characteristics of Powder-Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 272: 1515–1517.
  • 36. Oka, H., Uchidate, S., Sekino, N. (2011). Electromagnetic Wave Absorption Characteristics of Half Carbonized Powder-Type Magnetic Wood. IEEE. Transactions on Magnetics, 47: 3078–3080.
  • 37. Oka, H., Fujita, H. (1999). Experimental Study on Magnetic and Heating Characteristics of Magnetic Wood. Journal of Applied Physics 85 (8):5732-5734
  • 38. Özdemir, F., Ramazanoğlu. D., Tutuş, A. (2018a). Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları. Journal of Bartin Faculty of Forestry, 20 (3): 664-676.
  • 39. Özdemir, F., Ramazanoğlu, D., Tutuş, A. (2018b). Göknar Odunun Yüzey Kalitesi Üzerine Yaşlandırma Süresi, Zımparalama ve Kesit Yönü Etkisinin Araştırılması. Bartın Orman Fakültesi Dergisi, 20 (2), 194-204.
  • 40. Ramazanoğlu, D., ve Özdemir, F. (2019). Heavy Metal Absorbtion of Wood As Natural Smart Material. Kahramanmaraş,Turkey. III. International Mediterranean Forest and Environment Symposium, 03-05 October- Kahramanmaraş Oral Presentations kahramanmaraş Sütçü İmam Üniversitesi Kahramanmaraş,Turkey. s. 364-368
  • 41. Patachia, S., Croitoru, C., Friedrich, C. (2012). Effect of Uv Exposure on The Surface Chemistry of Wood Veneers Treated with Ionic Liquids. Applied Surface Science, 258: 6723–6729.
  • 42. Salla, J., Pandey, K.K., Srinivas, K., (2012). Improvement of Uv Resistance of Wood Surfaces by Using ZnO Nanoparticles. Polymer Degradation Stability Journal, 97:592–596.
  • 43. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004). Effects of Short-Time Vibratory Ball Milling on The Shape of FT-IR Spectra of Wood and Cellulose. Vibrational Spectroscopy, 36:23–40.
  • 44. Tarleton, E., (1992). The Role of Field-Assisted Techniques In Solid/Liquid Separation. Filtr Separat 29(3): 246-238.
  • 45. Tarleton, E., Wakeman, R. (1998). Ultrasound Food Process. Thomson Science, London, United Kingdom. 193-218.
  • 46. Waldron, R.D. (1955). Infrared Spectra of Ferrites. Physical Review Journals, American Physical Society 99 (6): 1727-1735.
  • 47. Wan, P.J., Muanda, M.W., Covey, J.E. (1992). Ultrasonic Vs Nonultrasonic Hydrogenation In A Batch Reactor. Journal of the American Oil Chemists Society, 69(9): 876-879.
  • 48. Xia, T., Li, N., Wu, Y., Liu, L. (2012). Patterned Superhydrophobic Surface Based on Pd Based Metallic Glass. Applied Physics Letters, 101, p. 081601.
  • 49. Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H., Chen, G. (2011). Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 Particles with Porous Superstructure Fabricated by A Modified Chemical Coprecipitation Method. Journal of Nanoparticle Research,13; 2147–2155.
  • 50. Donath, S. Militz, H. Mai, C. (2007). Weathering of Silane Treated Wood, Holz. Roh. Werkst. 65: 35–4.

Smart Nano Biomimetic Hydrothermal Location on Wooden Surface

Yıl 2020, Cilt: 22 Sayı: 2, 447 - 456, 15.08.2020

Öz

The aim of this study is to make nono-dimensional functionalization on the wooden surface by using hydrothermal method and thus to ensure that the surface exhibits a smart orientation towards environmental conditions. Ferrous sulfate heptahydrate (FeSO4·7H2O), Chromium (II) chloride (CrCl2), Sodium hydroxide (NaOH), Ethyl alcohol (EtOH) and Potassium nitrate (KNO3) chemicals were used in the first part of the two-stage functionalization process on the lignocellulosic surface. Thus, a surface with anti-UV property was obtained. Octadecyltrichlorosilane (OTS, 95%) was used in the second step, Hydrophobization. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy diffuser x-ray (EDX) instrumental analyzes were used to characterize the modification applications. Hydrophobicity was determined by measuring the water contact angle (WCA) of the new functional surface. Its anti-UV feature was determined by UV-Vis spectrometry. As a result of the characterization studies, hydrothermal nano functioning has been proved to be successful. The water contact angle of the new surface was measured as θγ 128 °. It has anti-UV properties in the area where the wavelength range is 200-800 nm. It has anti-UV properties in the area where the wavelength range is 200-800 nm. After functioning, surface change parameters were made according to ISO 4287 standard. Color change rates are determined in accordance with ISO 2469 (2014) standards.

Proje Numarası

Proje No: 2018/3-20 D.

Kaynakça

  • 1. Amir, M.D., Kurtan, U., Baykal, A., Sozeri, H. (2016). MnFe2O4@ PANI@Ag Heterogeneous Nanocatalyst For Degradation of Industrial Aqueous Organic Pollutants. Journal of Materials Science & Technology, 32, 134–141. 2. Amir, M.D., Unal Sagar, B., Shirsath, E., Geleri, M., Sertkol, M., Baykal, A. (2015). Polyol Synthesis of Mn3+ substituted Fe3O4 Nanoparticles: Cation Distribution, Structural and Electrical Properties. Superlattice Microstructure, 85, 747–760
  • 3. Andersson, S., Serimaa, R., Paakkari, T., Saranpa¨a¨ P., & Pesonen, E. (2003). Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49: 531 –537
  • 4. Barthlott, W., Neinhuis, C. (1997). Purity of The Sacred Lotus, or Escape From Contamination In Biological Surfaces. Planta. 202:1–8.
  • 5. Borysiak, S., Doczekalska, B. (2005b). X-ray Diffraction Study of Pine Wood Treated with NaOH Fibers. Textiles Eastern Europe, 13 pp. 87-89.
  • 6. Chandrapala, J., Oliver, C.M., Kentish, S., Ashokkumar, M. (2013). Use of Power Ultrasound to Improve Extraction and Modify Phase Transitions In Food Processing. Food Reviews International, 29(1): 67-91.
  • 7. 7. De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527.
  • 8. Eichhorn, S.J., Dufresne, A., Aranguren, M. (2010). Review: Current International Research into Cellulose Nanofibers and Nanocomposites. Journal of Materials Science, 45: 1–33.
  • 9. Faux, O., 1991. Classification of Lignins From Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45:21–28.
  • 10. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D. (2002). Super‐Hydrophobic Surfaces: From Natural to Artificial.Advanced Materials, 14: 1857–1860.
  • 11. Fernandes, F.A.N., Linhares, F.E.J., Rodrigues, S. (2008). Ultrasound As Pre-Treatment For Drying of Pineapple. Ultrasonics Sonochemistry, 15(6):1049-1054.
  • 12. Floros, J.D., Liang, H.H., (1994). Acoustically Assisted Diffusion Through Membranes And Biomaterials. Food Technol-Chicago, 48(12): 79-84.
  • 13. Gallego-Juarez, J.A. (2006). Food Drying Process by Power Ultrasound. Ultrasonics, 44: 523-527.
  • 14. Gan, W.T. Gao, L.K. Sun, F.Q. Jin, C.D. Lu, Y. Li J. (2015). Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Applied Surface Science, 322 :565-572.
  • 15. Gao, L., Lu, Y., Zhan, X., Sun, Q. (2015a). A Robust, Anti-Acid, And High-Temperature Humidity-Resistant Superhydrophobic Surface Of Wood Based on A Modified TiO2 Film by Fluoroalkyl Silane. Surface and Coatings Technology, 262: 33-39.
  • 16. Guner, S. Amir, M.D. Geleri, M. Sertkol, M. Baykal, A. (2015). Magneto-optical properties of Mn3+ Substituted Fe3O4 Nanoparticles. Ceramics International, 41,10915–10922.
  • 17. Gust, J., Suwalski, J. (1994). Use Of Mossbauer Spectroscopy To Study Reaction Products Of Polyphenols And Iron Compounds, Corrosion, 50(5): 355-365.
  • 18. Hakkou, M. Pétrissans, M. Zoulalian, A. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation Stability Journal, 89:1–5.
  • 19. Hayoz, P. Peter, W. Rogez, D. (2003). A New Innovative Stabilization Method for the Protection of Natural Wood. Prog. Org. Coat, 48: 297–309.
  • 20. He, Z., Zhao, Z., Yang, F., Yi, S. (2014). Effect of Ultrasound Pretreatment on Wood Prior to Vacuum Drying Maderas: Ciencia y Tecnologia, vol. 16, no. 4, pp. 395–402.
  • 21. ISO 4287, 1997. Geometrical Product Specifications Surface Texture Profile Method Terms. Definitions and Surface Texture Parameters, International Standart Organization.
  • 22. ISO 2469, 2014. Paper, board and pulps measurement of diffuse radiance factor diffuse reflectance factor.
  • 23. Jirous-Rajkovic, V. Bogner, A. & Radovan, D. (2004). The Efficiency of Various Treatments in Protecting Wood Surfaces Against Weathering. Surface and Coatings Technology, 87:15–19. 24. Kozissnik, B., Bohorquez, A.C., Doboson, J., Rinaldi, C. (2013). Magnetic Fuid Hyperthermia: Advances, Challenges and Opportunity. International Journal of Hyperthermia, 29, 706–714.
  • 25. Kumar, M., Gupta, R.C., Sharma, T. (1993). X- ray Diffraction Studies of Acacia and Eucalyptus Wood Chars. Journal of Materials Science. 28: 805.
  • 26. Li, N., Xia, T., Heng, L., Liu, L. (2013). Superhydrophobic Zr-based Metallic Glass Surface with High Adhesive Force. Applied Physics Letters, 102, p. 251603. 27. Liang, C.Y., Marchessault, R.H. (1959). Infrared Spectra of Crystalline Polysaccharides. Hydrogen Bonds in Native Celluloses. Journal of Polymer Science, 37:385–395. 28. Lu, Y., Xiao, S., Gao, R., Li, J., Sun, Q. (2014). Improved Weathering Performance and Wettability of Wood Protected by CeO2 Coating Deposited onto The Surface, Holzforschung, 68:345–351.
  • 29. MacLean H, Gardner J.A.F. (1952). Bark Extracts in Adhesives. Pulp Paper Mag. Can. (August) 111– 114.
  • 30. Mary, J.A., Manikandan, A., Chinnaraj, K., Arul, A.S., Neeraja, P. (2015). Comparative Studies of Spinel MnFe2O4 nanostructures: Structural, Morphological, Optical, Magnetic and Catalytic Properties. Journal of Nanoscience and Nanotechnology, 15, 9732–9740.
  • 31. Oka, H., Kataoka, Y., Osada, H., Aruga, Y. (2007). Experimental Study on Electromagnetic Wave Absorbing Control of Coating-Type Magnetic Wood Using A Grooving Process. Journal of Magnetism and Magnetic Materials, 310: E1028–E1029.
  • 32. Oka, H., Hamano, H., Chiba, S. (2004a). Experimental Study on Actuation Functions of Coating-Type Magnetic. Journal of Magnetism and Magnetic Materials, 272: E1693–E1694.
  • 33. Oka, H., Hojo, A., Seki, K., Takashiba, T. (2002a). Wood Construction and Magnetic Characteristics of Impregnated Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 239: 617–619.
  • 34. Oka, H., Narita, K., Osada, H., Seki, K. (2002b). Experimental Results on Indoor Electromagnetic Wave Absorber Using Magnetic Wood. Journal of Applied Physics, 91: 7008–010.
  • 35. Oka, H., Tokuta, H., Namizaki, Y., Sekino N. (2004b). Effects of Humidity on The Magnetic and Woody Characteristics of Powder-Type Magnetic Wood. Journal of Magnetism and Magnetic Materials, 272: 1515–1517.
  • 36. Oka, H., Uchidate, S., Sekino, N. (2011). Electromagnetic Wave Absorption Characteristics of Half Carbonized Powder-Type Magnetic Wood. IEEE. Transactions on Magnetics, 47: 3078–3080.
  • 37. Oka, H., Fujita, H. (1999). Experimental Study on Magnetic and Heating Characteristics of Magnetic Wood. Journal of Applied Physics 85 (8):5732-5734
  • 38. Özdemir, F., Ramazanoğlu. D., Tutuş, A. (2018a). Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları. Journal of Bartin Faculty of Forestry, 20 (3): 664-676.
  • 39. Özdemir, F., Ramazanoğlu, D., Tutuş, A. (2018b). Göknar Odunun Yüzey Kalitesi Üzerine Yaşlandırma Süresi, Zımparalama ve Kesit Yönü Etkisinin Araştırılması. Bartın Orman Fakültesi Dergisi, 20 (2), 194-204.
  • 40. Ramazanoğlu, D., ve Özdemir, F. (2019). Heavy Metal Absorbtion of Wood As Natural Smart Material. Kahramanmaraş,Turkey. III. International Mediterranean Forest and Environment Symposium, 03-05 October- Kahramanmaraş Oral Presentations kahramanmaraş Sütçü İmam Üniversitesi Kahramanmaraş,Turkey. s. 364-368
  • 41. Patachia, S., Croitoru, C., Friedrich, C. (2012). Effect of Uv Exposure on The Surface Chemistry of Wood Veneers Treated with Ionic Liquids. Applied Surface Science, 258: 6723–6729.
  • 42. Salla, J., Pandey, K.K., Srinivas, K., (2012). Improvement of Uv Resistance of Wood Surfaces by Using ZnO Nanoparticles. Polymer Degradation Stability Journal, 97:592–596.
  • 43. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. (2004). Effects of Short-Time Vibratory Ball Milling on The Shape of FT-IR Spectra of Wood and Cellulose. Vibrational Spectroscopy, 36:23–40.
  • 44. Tarleton, E., (1992). The Role of Field-Assisted Techniques In Solid/Liquid Separation. Filtr Separat 29(3): 246-238.
  • 45. Tarleton, E., Wakeman, R. (1998). Ultrasound Food Process. Thomson Science, London, United Kingdom. 193-218.
  • 46. Waldron, R.D. (1955). Infrared Spectra of Ferrites. Physical Review Journals, American Physical Society 99 (6): 1727-1735.
  • 47. Wan, P.J., Muanda, M.W., Covey, J.E. (1992). Ultrasonic Vs Nonultrasonic Hydrogenation In A Batch Reactor. Journal of the American Oil Chemists Society, 69(9): 876-879.
  • 48. Xia, T., Li, N., Wu, Y., Liu, L. (2012). Patterned Superhydrophobic Surface Based on Pd Based Metallic Glass. Applied Physics Letters, 101, p. 081601.
  • 49. Zhu, Z., Li, X., Zhao, Q., Shi, Y., Li, H., Chen, G. (2011). Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 Particles with Porous Superstructure Fabricated by A Modified Chemical Coprecipitation Method. Journal of Nanoparticle Research,13; 2147–2155.
  • 50. Donath, S. Militz, H. Mai, C. (2007). Weathering of Silane Treated Wood, Holz. Roh. Werkst. 65: 35–4.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kereste, Hamur ve Kağıt
Bölüm Biomaterial Engineering, Bio-based Materials, Wood Science
Yazarlar

Doğu Ramazanoğlu 0000-0002-6356-5792

Ferhat Özdemir 0000-0002-2282-1884

Proje Numarası Proje No: 2018/3-20 D.
Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 2

Kaynak Göster

APA Ramazanoğlu, D., & Özdemir, F. (2020). Ahşap Yüzeyde Akıllı Nano Biyomimetik Hidrotermal Lokasyonlama. Bartın Orman Fakültesi Dergisi, 22(2), 447-456.


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com