Araştırma Makalesi
BibTex RIS Kaynak Göster

Karbon Depolama Miktarlarının Zamansal Değişimi

Yıl 2020, Cilt: 22 Sayı: 2, 591 - 603, 15.08.2020
https://doi.org/10.24011/barofd.699049

Öz

Bolu Orman Bölge Müdürlüğü, Aladağ Orman İşletme Müdürlüğü, Demirciler Orman İşletme Şefliği’nin ormanlarının 1986-1995 ve 2009-2018 yıllarına ait biyokütle ve karbon tutma kapasiteleri hesaplanmıştır. Ormanlarının biyokütle ve karbon depolama miktarları Allometrik Biyokütle Yöntemi (ABD) ve Biyokütle Genişletme Faktörü (BEF) yöntemine göre belirlenmiştir. ArcGIS sürüm 10.3TM ortamında haritalandırılmıştır. Planlama biriminde 1986-1995 Plan döneminde iğne yapraklı meşcerelerde ABD yöntemiyle 103,20 ton/ha karbon değeri belirlenirken, BEF yöntemiyle 92,18 ton/ha olarak belirlenmiştir. 2009-2018 plan döneminde ise yöntemler ABD yöntemi 127,63 ton/ha ve BEF yöntemi 122,43 ton/ha karbon hesabı çıkarmıştır. Geniş yapraklı ve karışık meşcere tiplerinde de paralel sonuçlar görülmüştür. Allometrik denklem yönteminde, ağaç türleri için, çapa bağlı geliştirilen denklemler kullanıldığından diğer yönteme göre daha sonuçlar verdiği düşünülmektedir.

Destekleyen Kurum

Bartın Üniversitesi

Proje Numarası

BAP-2018-FEN-CY-002

Teşekkür

Bartın Üniversitesi’nde Doç. Dr. Birsen DURKAYA danışmanlığında Melih KOCAMAN tarafından hazırlanmış olan yüksek lisans tezinden türetilen bu çalışma, BAP-2018-FEN-CY-002 numarasıyla desteklenmiştir. Desteklerinden dolayı Bartın Üniversitesi’ne teşekkür ederiz.

Kaynakça

  • Anon (1986). Orman Genel Müdürlüğü, Bolu Orman Bölge Müdürlüğü, Bolu Orman İşletme Müdürlüğü, Demirciler Orman İşletme Şefliği Orman Amenajman Planı 1986-1995.
  • Anon, (2009). Orman Genel Müdürlüğü, Bolu Orman Bölge Müdürlüğü, Aladağ Orman İşletme Müdürlüğü, Demirciler Orman İşletme Şefliği Orman Amenajman Planı 2009-2018.
  • Asan, Ü. (1995). Global iklim değişimi ve Türkiye ormanlarında karbon birikimi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(1-2), 23-38.
  • Asan, Ü., Destan, S., Özkan, U. Y. (2002). İstanbul korularının karbon depolama, oksijen üretimi ve toz tutma kapasitesinin kestirilmesi. Orman Amenajamanında Kavramsal Açılımlar ve Yeni Hedefler Sempozyumu, Bildiriler Kitabı, İstanbul, Türkiye, 194-202.
  • Backéus, S., Wikström, P., Lämås, T. (2005). A model for regional analysis of carbon sequestration and timber production. Forest Ecology and Management, 216(1-3), 28-40.
  • Baker, J. S., Wade, C. M., Sohngen, B. L., Ohrel, S., Fawcett, A. A. (2019). Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. Energy Policy, 126, 391-401.
  • Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., ... & Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
  • Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ..., Henry, M. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190.
  • Coomes, D. A., Allen, R. B., Scott, N. A., Goulding, C., Beets, P. (2002). Designing systems to monitor carbon stocks in forests and shrublands. Forest Ecology and Management, 164(1-3), 89-108.
  • Dewar, R. C., Cannell, M. G. (1992). Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology, 11(1), 49-71.
  • Dhakal, B., Kattel, R. R. (2019). Effects of global changes on ecosystems services of multiple natural resources in mountain agricultural landscapes. Science of the Total Environment, 676, 665-682.
  • Durkaya, B. (1998). Zonguldak Orman Bölge Müdürlüğü Meşe Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi. Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, 110.
  • Durkaya, A., Durkaya, B., Çakıl, E. (2009b). Predicting the above-ground biomass of crimean pine (Pinus nigra )stands in Turkey. Journal of Environmental Biology, 31, 115-118.
  • Durkaya, A., Durkaya, B., Ünsal, A. (2009a). Predicting the above-ground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology, Vol 8 (11), 2483-2488 ISSN 1684-5315 © 2009 Academic Journals.
  • Durkaya, A., Durkaya, B., Atmaca, S. (2010). Predicting the Above-ground Biomass of Scots Pine (Pinus sylvestris L.) Stands in Turkey. Energy Sources, Part A, 32, 485-493, DOI:10.1080/15567030802612473.
  • Durkaya, B., Durkaya, A., Makineci, E., Karabürk, T. (2013b). Estimating Above-Ground Bıomass and Carbon Stock of Individual Trees in Uneven-Aged Uludag Fir Stands. Fresenius Environmental Bulletin, 22 (2), 428-434.
  • Durkaya, B., Durkaya, A., Makineci, E., Ülküdür,M. (2013a). Estimation of Above-Ground Biomass and sequestered Carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest-Biogeosciences and Forestry. 6:278-284. DOI:10.3832/ifor0899-006.
  • Durkaya, B., Varol, T., & Durkaya, A. (2014). Determination of carbon stock changes: Biomass models or biomass expansion factors.
  • Durkaya, B. , Durkaya, A. , Kocaman M. , (2017). Karbon Stok Değişimi; Bolu Sarıalan İşletme Şefliği Örneği, Bartın Orman Fakültesi Dergisi, : 19(1): 268-275 Cilt 19, Sayı 1.
  • Gençay, G., Birben, Ü., Durkaya, B. (2018). Effects of legal regulations on land use change: 2/B applications in Turkish forest law. Journal Of Sustainable Forestry, 37(8), 804-819.
  • Elias, M., Potvin, C. (2003). Assessing inter-and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research, 33(6), 1039-1045.
  • Fang, J. Y., Wang, G. G., Liu, G. H., Xu, S. L. (1998). Forest biomass of China: an estimate based on the biomass–volume relationship. Ecological Applications, 8(4), 1084-1091.
  • Fang, J., Guo, Z., Piao, S., & Chen, A. (2007). Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 50(9), 1341-1350.
  • Fearnside, P. M. (1985). Environmental change and deforestation in the Brazilian Amazon. Change in the Amazon Basin: Man's Impact on Forests and Rivers, 70-89. FRA (2010). Country Report, Turkey, pp.37-39.
  • Fukuda, M., Iehara, T., Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology And Management, 184(1-3), 1-16.
  • Gower, S. T., Kucharik, C. J., Norman, J. M., (1999). Direct and indirect estimation of leaf area index, F(APAR), and net primary production of terrestrial ecosystems. Remote Sensing of Environment,70, 29–51.
  • Hashimotio, T., Kojima, K., Tanşe, T., Satohiko, S., (2000). Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. Forest Ecology and Management, 126: 331-337.
  • Huxley, D. J., Huxley, J. S. (1993). Problems of relative growth. The Johns Hopkıns Unıversıty Press. Baltimore and London.
  • IPCC (2003). Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES), Hayama, Japan.
  • IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). IGES, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html [Verified 29/10/ 2008].
  • IPCC (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley Cambridge, United Kingdom and New York, USA.
  • İkinci, O. (2000). Bolu Orman Bölge Müdürlüğü Kestane Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi, ZKÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 86 s. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., ..., Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration?. Geoderma, 137(3-4), 253-268.
  • Kangas, A., Maltamo, M. (Eds.). (2006). Forest inventory: methodology and applications (Vol. 10). Springer Science & Business Media.
  • Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambaşau, Y. & Palm, C.A., (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management,146: 199-209.
  • Laiho, R., Laine, J. (1997). Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management, 93(1-2), 161-169.
  • Lamlom, S. H., Savidge, R. A. (2003). A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25(4), 381-388.
  • Leonard, B., Costello, C., Libecap, G. D. (2019). Expanding Water Markets in the Western United States: Barriers and Lessons from Other Natural Resource Markets. Review of Environmental Economics and Policy, 13(1), 43-61.
  • Matthews, H. D., Gillett, N. P., Stott, P. A., Zickfeld, K. (2009). The proportionality of global warming to cumulative carbon emissions. Nature, 459(7248), 829-832.
  • Matthews, H. D., Zickfeld, K., Knutti, R., Allen, M. R. (2018). Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environmental Research Letters, 13(1), 010201.
  • Milne, R., Brown, T. A. W., Murray, T. D. (1998). The effect of geographical variation of planting rate on the uptake of carbon by new forests of Great Britain. Forestry: An International Journal of Forest Research, 71(4), 297-309.
  • Niklas, K. J., Enquist, B. J. (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences, 98(5), 2922-2927.
  • Niklas, K. J., Owens, T., Reich, P. B., Cobb, E. D. (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8(6), 636-642. OGM (2014). Ekosistem Tabanlı Fonksiyonel Orman Amenajmanı Planlarının Düzenlenmesine Ait Usul ve Esaslar. OGM.
  • Olalekan, R. M., Omidiji, A. O., Williams, E. A., Christianah, M. B., Modupe, O. (2019). The roles of all tiers of government and development partners in environmental conservation of natural resource: a case study in Nigeria. MOJ Ecology & Environmental Sciences, 4(3), 114-121.
  • Pajtík, J., Konôpka, B., Lukac, M. (2008). Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256(5), 1096-1103.
  • Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., ..., Huxtable, D. (2016). Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22(6), 2106-2124.
  • Porté, A., Trichet, P., Bert, D., Loustau, D. (2002). Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aıt.). Forest Ecology and Management, 158(1-3), 71-83.
  • Saraçoğlu, N. (1998). Kayın (Fagus orientalis Lipsky) Biyokütle Tabloları, Tr. J. of Agriculture and Forestry, 22, pp 93-100.
  • Schoene, D. (2002). Terminology in assessing and reporting forest carbon change. In Second expert meeting on harmonizing forest-related definitions for use by various stakeholders. FAO, Rome.
  • Schroeder, P., Brown, S., Mo, J., Birdsey, R., Cieszewski, C. (1997). Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science, 43(3), 424-434.
  • Schulp, C. J., Nabuurs, G. J., Verburg, P. H., de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482-490.
  • Shi, L., Liu, S. (2017). Methods of Estimating Forest Biomass: A Review. In Biomass Volume Estimation and Valorization for Energy. InTech.
  • Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., Weiss, P. (2007). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2), 197-207.
  • Tobin, B., Nieuwenhuis, M. (2007). Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research, 126(2), 189-196.
  • Tolunay, D., Çömez, A. (2008). Türkiye ormanlarinda toprak ve ölü örtüde depolanmiş organik karbon miktarlari. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu Bildiri Kitabı, s.750-765. 22-25 Ekim 2008, Hatay.
  • Tolunay, D. (2011). Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35(3), 265-279.
  • Tolunay, D. (2012). Türkiye’de ağaç servetinden bitkisel kütle ve karbon miktarlarının hesaplamasında kullanılabilecek katsayılar. Ormancılıkta Sektörel Planlamanın 50.Yılı Uluslararası Sempozyumu Bildiriler Kitabı, s:240-251 Ankara, 2013.
  • UN (1992). United Nations Framework Convention on Climate Change. United Nations, Fccc/Informal/84, Ge. 05-62220.
  • Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., Tapias, Á. D. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906-1913.
  • Van Camp, N., Walle, I. V., Mertens, J., De Neve, S., Samson, R., Lust, N., ..., Mestdagh, I. (2004). Inventory-based carbon stock of Flemish forests: a comparison of European biomass expansion factors. Annals of Forest Science, 61(7), 677-682.
  • Vashum, K. T., Jayakumar, S., (2012). Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review, J Ecosyst Ecogr 2012, 2:4 http://dx.doi.org/10.4172/2157-7625.1000116.
  • Wang, C. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222(1-3), 9-16.
  • Woodwell, G. M., Whittaker, R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C., Botkin, D. B. (1978). The biota and the world carbon budget. Science, 199(4325), 141-146.
  • Yolasığmaz, H., Çavdar, B., Demirci, U., Aydın, İ. (2016). İki farklı yönteme göre karbon birikiminin tahmin edilmesi: Artvin Orman İşletme Şefliği örneği. Türkiye Ormancılık Dergisi, 17(1), 43-51.
  • Zhang, X., Wang, M., Liang, X. (2008). Quantitative classification and carbon density of the forest vegetation in Lüliang Mountains of China. In Forest Ecology (pp. 1-9). Springer, Dordrecht.
  • Zickfeld, K., Eby, M., Matthews, H. D., Weaver, A. J. (2009). Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences, 106(38), 16129-16134.

Temporal Variation of Carbon Storage Quantities

Yıl 2020, Cilt: 22 Sayı: 2, 591 - 603, 15.08.2020
https://doi.org/10.24011/barofd.699049

Öz

The biomass and carbon stock capacities of Bolu Forest Regional Directorate, Aladağ Forest Management Directorate, Demirciler Forest Management Directorate's forests between 1986-1995 and 2009-2018 were calculated. Biomass and carbon storage amounts of forests were determined according to Allometric Biomass Method (USA) and Biomass Expansion Factor (BEF) method. It is mapped to the ArcGISTM 10.3 environment. While the carbon value of 103.20 ton/ha was determined by the US method in the coniferous stands during the 1986-1995 Plan period, it was determined as 92.18 ton/ha by the BEF method. In the 2009-2018 plan period, 127.63 tons/ha of carbon was calculated with the US method and 122.43 tons /ha of carbon with the BEF method. Parallel results were also seen in broad leaf and mixed stand types.In the allometric equation method, since the equations developed based on the diameter are used for tree species, it is thought to give more results than the other method.

Proje Numarası

BAP-2018-FEN-CY-002

Kaynakça

  • Anon (1986). Orman Genel Müdürlüğü, Bolu Orman Bölge Müdürlüğü, Bolu Orman İşletme Müdürlüğü, Demirciler Orman İşletme Şefliği Orman Amenajman Planı 1986-1995.
  • Anon, (2009). Orman Genel Müdürlüğü, Bolu Orman Bölge Müdürlüğü, Aladağ Orman İşletme Müdürlüğü, Demirciler Orman İşletme Şefliği Orman Amenajman Planı 2009-2018.
  • Asan, Ü. (1995). Global iklim değişimi ve Türkiye ormanlarında karbon birikimi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 45(1-2), 23-38.
  • Asan, Ü., Destan, S., Özkan, U. Y. (2002). İstanbul korularının karbon depolama, oksijen üretimi ve toz tutma kapasitesinin kestirilmesi. Orman Amenajamanında Kavramsal Açılımlar ve Yeni Hedefler Sempozyumu, Bildiriler Kitabı, İstanbul, Türkiye, 194-202.
  • Backéus, S., Wikström, P., Lämås, T. (2005). A model for regional analysis of carbon sequestration and timber production. Forest Ecology and Management, 216(1-3), 28-40.
  • Baker, J. S., Wade, C. M., Sohngen, B. L., Ohrel, S., Fawcett, A. A. (2019). Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. Energy Policy, 126, 391-401.
  • Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., ... & Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
  • Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ..., Henry, M. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190.
  • Coomes, D. A., Allen, R. B., Scott, N. A., Goulding, C., Beets, P. (2002). Designing systems to monitor carbon stocks in forests and shrublands. Forest Ecology and Management, 164(1-3), 89-108.
  • Dewar, R. C., Cannell, M. G. (1992). Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology, 11(1), 49-71.
  • Dhakal, B., Kattel, R. R. (2019). Effects of global changes on ecosystems services of multiple natural resources in mountain agricultural landscapes. Science of the Total Environment, 676, 665-682.
  • Durkaya, B. (1998). Zonguldak Orman Bölge Müdürlüğü Meşe Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi. Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, 110.
  • Durkaya, A., Durkaya, B., Çakıl, E. (2009b). Predicting the above-ground biomass of crimean pine (Pinus nigra )stands in Turkey. Journal of Environmental Biology, 31, 115-118.
  • Durkaya, A., Durkaya, B., Ünsal, A. (2009a). Predicting the above-ground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology, Vol 8 (11), 2483-2488 ISSN 1684-5315 © 2009 Academic Journals.
  • Durkaya, A., Durkaya, B., Atmaca, S. (2010). Predicting the Above-ground Biomass of Scots Pine (Pinus sylvestris L.) Stands in Turkey. Energy Sources, Part A, 32, 485-493, DOI:10.1080/15567030802612473.
  • Durkaya, B., Durkaya, A., Makineci, E., Karabürk, T. (2013b). Estimating Above-Ground Bıomass and Carbon Stock of Individual Trees in Uneven-Aged Uludag Fir Stands. Fresenius Environmental Bulletin, 22 (2), 428-434.
  • Durkaya, B., Durkaya, A., Makineci, E., Ülküdür,M. (2013a). Estimation of Above-Ground Biomass and sequestered Carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest-Biogeosciences and Forestry. 6:278-284. DOI:10.3832/ifor0899-006.
  • Durkaya, B., Varol, T., & Durkaya, A. (2014). Determination of carbon stock changes: Biomass models or biomass expansion factors.
  • Durkaya, B. , Durkaya, A. , Kocaman M. , (2017). Karbon Stok Değişimi; Bolu Sarıalan İşletme Şefliği Örneği, Bartın Orman Fakültesi Dergisi, : 19(1): 268-275 Cilt 19, Sayı 1.
  • Gençay, G., Birben, Ü., Durkaya, B. (2018). Effects of legal regulations on land use change: 2/B applications in Turkish forest law. Journal Of Sustainable Forestry, 37(8), 804-819.
  • Elias, M., Potvin, C. (2003). Assessing inter-and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research, 33(6), 1039-1045.
  • Fang, J. Y., Wang, G. G., Liu, G. H., Xu, S. L. (1998). Forest biomass of China: an estimate based on the biomass–volume relationship. Ecological Applications, 8(4), 1084-1091.
  • Fang, J., Guo, Z., Piao, S., & Chen, A. (2007). Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 50(9), 1341-1350.
  • Fearnside, P. M. (1985). Environmental change and deforestation in the Brazilian Amazon. Change in the Amazon Basin: Man's Impact on Forests and Rivers, 70-89. FRA (2010). Country Report, Turkey, pp.37-39.
  • Fukuda, M., Iehara, T., Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology And Management, 184(1-3), 1-16.
  • Gower, S. T., Kucharik, C. J., Norman, J. M., (1999). Direct and indirect estimation of leaf area index, F(APAR), and net primary production of terrestrial ecosystems. Remote Sensing of Environment,70, 29–51.
  • Hashimotio, T., Kojima, K., Tanşe, T., Satohiko, S., (2000). Changes in carbon storage in fallow forests in the tropical lowlands of Borneo. Forest Ecology and Management, 126: 331-337.
  • Huxley, D. J., Huxley, J. S. (1993). Problems of relative growth. The Johns Hopkıns Unıversıty Press. Baltimore and London.
  • IPCC (2003). Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES), Hayama, Japan.
  • IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). IGES, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html [Verified 29/10/ 2008].
  • IPCC (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley Cambridge, United Kingdom and New York, USA.
  • İkinci, O. (2000). Bolu Orman Bölge Müdürlüğü Kestane Meşcerelerinin Biyokütle Tablolarının Düzenlenmesi, ZKÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 86 s. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., ..., Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration?. Geoderma, 137(3-4), 253-268.
  • Kangas, A., Maltamo, M. (Eds.). (2006). Forest inventory: methodology and applications (Vol. 10). Springer Science & Business Media.
  • Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambaşau, Y. & Palm, C.A., (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management,146: 199-209.
  • Laiho, R., Laine, J. (1997). Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management, 93(1-2), 161-169.
  • Lamlom, S. H., Savidge, R. A. (2003). A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25(4), 381-388.
  • Leonard, B., Costello, C., Libecap, G. D. (2019). Expanding Water Markets in the Western United States: Barriers and Lessons from Other Natural Resource Markets. Review of Environmental Economics and Policy, 13(1), 43-61.
  • Matthews, H. D., Gillett, N. P., Stott, P. A., Zickfeld, K. (2009). The proportionality of global warming to cumulative carbon emissions. Nature, 459(7248), 829-832.
  • Matthews, H. D., Zickfeld, K., Knutti, R., Allen, M. R. (2018). Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environmental Research Letters, 13(1), 010201.
  • Milne, R., Brown, T. A. W., Murray, T. D. (1998). The effect of geographical variation of planting rate on the uptake of carbon by new forests of Great Britain. Forestry: An International Journal of Forest Research, 71(4), 297-309.
  • Niklas, K. J., Enquist, B. J. (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences, 98(5), 2922-2927.
  • Niklas, K. J., Owens, T., Reich, P. B., Cobb, E. D. (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8(6), 636-642. OGM (2014). Ekosistem Tabanlı Fonksiyonel Orman Amenajmanı Planlarının Düzenlenmesine Ait Usul ve Esaslar. OGM.
  • Olalekan, R. M., Omidiji, A. O., Williams, E. A., Christianah, M. B., Modupe, O. (2019). The roles of all tiers of government and development partners in environmental conservation of natural resource: a case study in Nigeria. MOJ Ecology & Environmental Sciences, 4(3), 114-121.
  • Pajtík, J., Konôpka, B., Lukac, M. (2008). Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256(5), 1096-1103.
  • Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., ..., Huxtable, D. (2016). Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22(6), 2106-2124.
  • Porté, A., Trichet, P., Bert, D., Loustau, D. (2002). Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Aıt.). Forest Ecology and Management, 158(1-3), 71-83.
  • Saraçoğlu, N. (1998). Kayın (Fagus orientalis Lipsky) Biyokütle Tabloları, Tr. J. of Agriculture and Forestry, 22, pp 93-100.
  • Schoene, D. (2002). Terminology in assessing and reporting forest carbon change. In Second expert meeting on harmonizing forest-related definitions for use by various stakeholders. FAO, Rome.
  • Schroeder, P., Brown, S., Mo, J., Birdsey, R., Cieszewski, C. (1997). Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science, 43(3), 424-434.
  • Schulp, C. J., Nabuurs, G. J., Verburg, P. H., de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482-490.
  • Shi, L., Liu, S. (2017). Methods of Estimating Forest Biomass: A Review. In Biomass Volume Estimation and Valorization for Energy. InTech.
  • Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., Weiss, P. (2007). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2), 197-207.
  • Tobin, B., Nieuwenhuis, M. (2007). Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research, 126(2), 189-196.
  • Tolunay, D., Çömez, A. (2008). Türkiye ormanlarinda toprak ve ölü örtüde depolanmiş organik karbon miktarlari. Hava Kirliliği ve Kontrolü Ulusal Sempozyumu Bildiri Kitabı, s.750-765. 22-25 Ekim 2008, Hatay.
  • Tolunay, D. (2011). Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35(3), 265-279.
  • Tolunay, D. (2012). Türkiye’de ağaç servetinden bitkisel kütle ve karbon miktarlarının hesaplamasında kullanılabilecek katsayılar. Ormancılıkta Sektörel Planlamanın 50.Yılı Uluslararası Sempozyumu Bildiriler Kitabı, s:240-251 Ankara, 2013.
  • UN (1992). United Nations Framework Convention on Climate Change. United Nations, Fccc/Informal/84, Ge. 05-62220.
  • Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., Tapias, Á. D. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260(10), 1906-1913.
  • Van Camp, N., Walle, I. V., Mertens, J., De Neve, S., Samson, R., Lust, N., ..., Mestdagh, I. (2004). Inventory-based carbon stock of Flemish forests: a comparison of European biomass expansion factors. Annals of Forest Science, 61(7), 677-682.
  • Vashum, K. T., Jayakumar, S., (2012). Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review, J Ecosyst Ecogr 2012, 2:4 http://dx.doi.org/10.4172/2157-7625.1000116.
  • Wang, C. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222(1-3), 9-16.
  • Woodwell, G. M., Whittaker, R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C., Botkin, D. B. (1978). The biota and the world carbon budget. Science, 199(4325), 141-146.
  • Yolasığmaz, H., Çavdar, B., Demirci, U., Aydın, İ. (2016). İki farklı yönteme göre karbon birikiminin tahmin edilmesi: Artvin Orman İşletme Şefliği örneği. Türkiye Ormancılık Dergisi, 17(1), 43-51.
  • Zhang, X., Wang, M., Liang, X. (2008). Quantitative classification and carbon density of the forest vegetation in Lüliang Mountains of China. In Forest Ecology (pp. 1-9). Springer, Dordrecht.
  • Zickfeld, K., Eby, M., Matthews, H. D., Weaver, A. J. (2009). Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences, 106(38), 16129-16134.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Biodiversity, Environmental Management and Policy, Sustainable Forestry
Yazarlar

Melih Kocaman Bu kişi benim

Birsen Durkaya 0000-0002-3132-7044

Proje Numarası BAP-2018-FEN-CY-002
Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 2

Kaynak Göster

APA Kocaman, M., & Durkaya, B. (2020). Karbon Depolama Miktarlarının Zamansal Değişimi. Bartın Orman Fakültesi Dergisi, 22(2), 591-603. https://doi.org/10.24011/barofd.699049


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com