Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of different nano fillers on the physical and mechanical properties of medium density fiberboards (MDF)

Yıl 2020, Cilt: 22 Sayı: 3, 878 - 885, 15.12.2020
https://doi.org/10.24011/barofd.749358

Öz

In this study, the physical and mechanical properties of medium density fiber boards (MDF) produced with urea formaldehyde adhesive reinforced with nano-boron nitride (BN) and nano-titanium dioxide (TiO2) were investigated. 0.5% and 1.5% nano-filled urea formaldehyde adhesives were used in the production of test samples. The density, thickness swelling, water uptake, internal bond strength, bending strength, modulus of elasticity in bending and SEM analysis of the boards prepered were determined. According to the laboratory tests conducted, there was no significant change in the density of the boards after nano filling. Physical properties such as water intake and thickness swelling were determined to decrease with the addition of nano particles. The mechanical properties of the boards increased with the addition of both nano-BN and TiO2. According to the a results of thermogravimetric analysis, it has been determined that the thermal stability of urea formaldehyde adhesive with TiO2 is increased and maximum mass loss temperatures are higher than the addition of nano-BN. The morphological structure of the urea formaldehyde adhesive was visualized with an electron microscope, and the nanoparticle dispersions were displayed and the particles were also analyzed by EDAX analysis. As a result, it has been determined that MDFs prepared with nanoparticle adhesives have improved physical, mechanical and thermal properties. Particularly, all samples with nano particles have been achieved the standards required in their mechanical properties. As a result, it can be sad that the adding nano-particles have positive effect on the physical and mechanical properties of the panels.

Kaynakça

  • Ashori, A., Nourbakhsh, A. 2009. Mechanical behavior of agro‐residue‐reinforced polypropylene composites. Journal of Applied Polymer Science, 111 (5): 2616-2620.
  • Chen, T., Niu, M., Wu, Z., Xie, Y. 2015. Effect of silica sol content on thermostability and mechanical properties of ultra-low density fiberboards. BioResources, 10 (1): 1519-1527.
  • Eroğlu, H., Usta, M. 2000. Lif Levha Üretim Teknolojisi, Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, 351 s. Trabzon, Türkiye.
  • Istek, A., Ozlusoylu, I., Gozalan, M. 2017. The effects of surface coating and painting process on particleboard properties. Kastamonu University Journal of Forestry Faculty, 17(4), 619-629.
  • Jiang, Y., Wu, G., Chen, H., Song, S., Pu, J. 2013. Preparation of Nano-SiO2 Modified Urea-Formaldehyde Performed Polymer to Enhance Wood Properties. Rev.Adv. Mater. Sci. 33: 46-50.
  • Kumar, A., Gupta, A., Sharma, K.V. 2014. Thermal and mechanical properties of ureaformaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung, 69(2): 199–205.
  • Kumar, A., Gupta, A., Sharma, K.V., Gazali, S.B. 2013. Influence of Aluminum Oxide Nanoparticles on the Physical and Mechanical Properties of Wood Composites. BioResources, 8(4): 6231-6241.
  • Park, B.D. and Causin, V. 2013. Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal, 49 (2): 532-537.
  • Park, B.D., Jeong, H.W. 2012. Hydrolytic stability and crystallinity of cured urea–formaldehyde adhesive adhesives with different formaldehyde/urea mole ratios. Int. J. Adhes. Adhes. 31:524–529. Pizzi A. 1994. Advanced Wood Adhesives Technology. Marcel Dekker, New York.
  • Suchsland, O., Woodson, G.E. 1987. Fiberboard manufacturing practices in the United States. Agriculture handbook/United States. Dept. of Agriculture (USA).
  • Suchsland, O., Woodson, G.E., McMillin, C.W. 1986. Pressing of three-layer, dry-formed MDF with binderless hardboard faces. Forest Products Journal, 36 (1): 33-36.
  • Taghiyari, H.R., Mohammad-Panah, B., Morrell, J.J. 2016. Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from Wood fibers and camel-thorn. Maderas. Ciencia y tecnología 18(1): 157 – 166.
  • TS EN 310, 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. Turkish Standardization Institute, Ankara.
  • TS EN 317, 1999. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. Turkish Standardization Institute, Ankara.
  • TS EN 319, 1999. Particleboards and fibreboards- Determination of tensile strength perpendicular to the plane of the board. Turkish Standardization Institute, Ankara.
  • TS EN 325, 2012. Wood-Based panels- Determination of dimensions of test pieces. Turkish Standardization Institute, Ankara.
  • TS EN 326-1, 2012. Wood- Based panels- Sampling, cutting and inspection- Part 1: Sampling test pieces and expression of test results, Turkish Standardization Institute, Ankara.
  • Wegner, T.H.; Jones, P.H.E. 2006. Advancing cellulose-based nanotechnology. Cellulose, 13: 115-118.
  • Wegner, T.H.; Winandy, J.E.; Ritter, M.A. 2005. Nanotechnology opportunities in residential and non-residential construction. In: 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain.
  • Zahedsheijani, R., Gholamiyan, H., Tarmian, A., Yousefi, H. 2011. Mass transfer in medium density fiberboard (MDF) modified by Na+ montmorillonite (NA+MMT) nanoclay. Maderas. Ciencia y tecnología, 13(2): 163-172.

Orta Yoğunluklu Liflevhaların (OYL) Fiziksel ve Mekanik Özellikleri Üzerine Farklı Nano Dolguların Etkileri

Yıl 2020, Cilt: 22 Sayı: 3, 878 - 885, 15.12.2020
https://doi.org/10.24011/barofd.749358

Öz

Bu çalışmada, nano bor nitrür (BN) ve nano titanium dioksit (TiO2) ile güçlendirilmiş üre formaldehit tutkalı ile üretilen orta yoğunluklu liflevhaların (MDF) fiziksel ve mekanik özellikleri araştırılmıştır. %0,5 ve %1,5 nano dolgulu üre formaldehit tutkalı test örneklerinin hazırlanmasında kullanılmıştır. Hazırlanan levhaların yoğunluğu, kalınlığına şişmesi, su alması, iç yapışma direnci, eğilme direnci ve eğilmede elastikiyet modülü ve ayrıca tutkalın SEM analizleri gerçekleştirilmiştir. Yapılan laboratuvar testlerine göre, levhaların yoğunluklarında nano dolgu sonrası önemli bir değişim meydana gelmemiştir. Su alma ve kalınlığına şişme gibi fiziksel özellikler nano dolgularla azaldığı belirlenmiştir. Levhaların mekanik özellikleri ise hem nano-BN hemde TiO2 ilavesi ile artmıştır. Termogravimetrik analizine göre, genellikle TiO2 içeren üre formaldehit tutkalının yanma kararlılığının arttığı saptanmıştır ve maksimum kütle kaybı sıcaklıklarının ise nano-BN ilavesiyle TiO2 ilavesine göre daha yüksek olduğu belirlenmiştir. Üre formaldehit tutkalının morfolojik yapısı electron mükroskobuyla görüntülenmiş ve nano partiküllerin dağılımları görüntülenmiştir ve ayrıca EDAX analizi ile partiküllerin analizi gerçekleştirilmiştir. Sonuç olarak nano partikül ilaveli tutkallarla hazırlanan MDF’ların fiziksel, mekansel ve termal özelliklerinde iyileşmeler olduğu belirlenmiştir. Özellikle nano partikül ilavesiyle hazırlanan örnekler, mekanik özellikler için istenen standartlar yakalanmıştır. Sonuçta, nano partikül ilave etmenin panellerin mekanik ve fiziksel özelliklerini üzerine olumlu etkilerinin olduğu söylenebilir.

Kaynakça

  • Ashori, A., Nourbakhsh, A. 2009. Mechanical behavior of agro‐residue‐reinforced polypropylene composites. Journal of Applied Polymer Science, 111 (5): 2616-2620.
  • Chen, T., Niu, M., Wu, Z., Xie, Y. 2015. Effect of silica sol content on thermostability and mechanical properties of ultra-low density fiberboards. BioResources, 10 (1): 1519-1527.
  • Eroğlu, H., Usta, M. 2000. Lif Levha Üretim Teknolojisi, Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, 351 s. Trabzon, Türkiye.
  • Istek, A., Ozlusoylu, I., Gozalan, M. 2017. The effects of surface coating and painting process on particleboard properties. Kastamonu University Journal of Forestry Faculty, 17(4), 619-629.
  • Jiang, Y., Wu, G., Chen, H., Song, S., Pu, J. 2013. Preparation of Nano-SiO2 Modified Urea-Formaldehyde Performed Polymer to Enhance Wood Properties. Rev.Adv. Mater. Sci. 33: 46-50.
  • Kumar, A., Gupta, A., Sharma, K.V. 2014. Thermal and mechanical properties of ureaformaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung, 69(2): 199–205.
  • Kumar, A., Gupta, A., Sharma, K.V., Gazali, S.B. 2013. Influence of Aluminum Oxide Nanoparticles on the Physical and Mechanical Properties of Wood Composites. BioResources, 8(4): 6231-6241.
  • Park, B.D. and Causin, V. 2013. Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal, 49 (2): 532-537.
  • Park, B.D., Jeong, H.W. 2012. Hydrolytic stability and crystallinity of cured urea–formaldehyde adhesive adhesives with different formaldehyde/urea mole ratios. Int. J. Adhes. Adhes. 31:524–529. Pizzi A. 1994. Advanced Wood Adhesives Technology. Marcel Dekker, New York.
  • Suchsland, O., Woodson, G.E. 1987. Fiberboard manufacturing practices in the United States. Agriculture handbook/United States. Dept. of Agriculture (USA).
  • Suchsland, O., Woodson, G.E., McMillin, C.W. 1986. Pressing of three-layer, dry-formed MDF with binderless hardboard faces. Forest Products Journal, 36 (1): 33-36.
  • Taghiyari, H.R., Mohammad-Panah, B., Morrell, J.J. 2016. Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from Wood fibers and camel-thorn. Maderas. Ciencia y tecnología 18(1): 157 – 166.
  • TS EN 310, 1999. Wood- Based panels- Determination of modulus of elasticity in bending and of bending strength. Turkish Standardization Institute, Ankara.
  • TS EN 317, 1999. Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. Turkish Standardization Institute, Ankara.
  • TS EN 319, 1999. Particleboards and fibreboards- Determination of tensile strength perpendicular to the plane of the board. Turkish Standardization Institute, Ankara.
  • TS EN 325, 2012. Wood-Based panels- Determination of dimensions of test pieces. Turkish Standardization Institute, Ankara.
  • TS EN 326-1, 2012. Wood- Based panels- Sampling, cutting and inspection- Part 1: Sampling test pieces and expression of test results, Turkish Standardization Institute, Ankara.
  • Wegner, T.H.; Jones, P.H.E. 2006. Advancing cellulose-based nanotechnology. Cellulose, 13: 115-118.
  • Wegner, T.H.; Winandy, J.E.; Ritter, M.A. 2005. Nanotechnology opportunities in residential and non-residential construction. In: 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain.
  • Zahedsheijani, R., Gholamiyan, H., Tarmian, A., Yousefi, H. 2011. Mass transfer in medium density fiberboard (MDF) modified by Na+ montmorillonite (NA+MMT) nanoclay. Maderas. Ciencia y tecnología, 13(2): 163-172.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Biomaterial Engineering, Bio-based Materials, Wood Science
Yazarlar

Ali Kızılkaya Bu kişi benim

Deniz Aydemir 0000-0002-7484-2126

Saadettin Murat Onat 0000-0003-1749-0619

Abdullah İstek

Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 3

Kaynak Göster

APA Kızılkaya, A., Aydemir, D., Onat, S. M., İstek, A. (2020). Effects of different nano fillers on the physical and mechanical properties of medium density fiberboards (MDF). Bartın Orman Fakültesi Dergisi, 22(3), 878-885. https://doi.org/10.24011/barofd.749358


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com