Araştırma Makalesi
BibTex RIS Kaynak Göster

Alkali Konsantrasyonunun Odun Unu Takviyeli PVC Kompozitlerin Mekanik Özelliklerine Etkisi

Yıl 2022, Cilt: 24 Sayı: 1, 145 - 156, 15.04.2022
https://doi.org/10.24011/barofd.1065643

Öz

Bu çalışma, modifiye edilmiş odun ununun termoplastik kompozitler üzerindeki etkisini belirlemek amacıyla yapılmıştır. Bu amaçla, farklı konsantrasyonlarda (%0-3-6-12) alkali (sodyum hidroksit (NaOH)) ile muamele edilmiş odun unu, polivinil klorür (PVC) polimerine ilave edilerek odun-PVC kompozitleri üretilmiştir. Alkali muamelesinin odun-PVC kompozitlerin mekanik özelliklerine etkisini tespit etmek için çekme direnci, çekmede elastikiyet modülü, eğilme direnci, eğilmede elastikiyet modülü ve sertlik değerleri belirlenmiştir. Alkali ile muamele edilmiş odun unu içeren kompozit numunelerin çekme direnci, eğilme direnci ve elastikiyet modülü değerleri muamele edilmemiş odun unu içerenlerinkine kıyasla daha yüksek tespit edilmiştir. En yüksek çekme ve eğilme direnci değerleri %6 NaOH muameleli odun unu içeren kompozit numunesinde tespit edilmiştir. Ayrıca, kompozitlerin sertlik değerlerinin, alkali muamelesinden çok fazla etkilenmediği görülmüştür. Bunlara ek olarak, termogravimetrik analiz (TGA) sonuçları, alkali muamelesinin kompozit malzemelerin termal kararlılığında artışa sebep olduğunu göstermiştir..

Teşekkür

Bu çalışmanın yapılması için laboratuvar desteklerinden dolayı Prof. Dr. Nihat Sami ÇETİN ve Prof. Dr. M. Hakkı ALMA’ya teşekkürlerimi sunarım.

Kaynakça

  • ASTM D4703-10 (2010). Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638-14 (2014). Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, USA.
  • Aziz, S. H. and Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 2–cashew nut shell liquid matrix. Composites Science and Technology, 64(9), 1231-1238.
  • Barreto, A. C. H., Rosa, D. S., Fechine, P. B. A. and Mazzetto, S. E. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites, Composites Part A, 42(5), 492-500.
  • Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., Antoni, A., Purwaningsih, H. and Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549.
  • Clemons, C. (2002). Wood-plastic composites in the United States: The interfacing of two industries. Forest Products Journal. 52 (6),10-18.
  • Clemons, C. M. and Ibach, R. E. (2004). Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Products Journal. 54 (4), 50-57.
  • Cuebas, L., Bertolini, J. A., Barros, R. T. P. D., Cordeiro, A. O. T., Rosa, D. D. S. and Martins, C. R. (2020). The incorporation of untreated and alkali-treated banana fiber in SEBS composites. Polímeros, 30.
  • Faix, O. (1992). Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry, Ed. Lin, S.Y., Dence, C.W., Springer, pp. 83-109.
  • Faruk, O., Bledzki, A. K., Fink, H. P. and Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596.
  • Gassan, J. and Bledzki, A. K. (1999). Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology, 59(9), 1303-1309.
  • Ge, X. C., Li, X. H. and Meng, Y. Z. (2004). Tensile properties, morphology, and thermal behavior of PVC composites containing pine flour and bamboo flour. Journal of Applied Polymer Science, 93(4), 1804-1811.
  • Ghasemi, I. and Farsi, M. (2010). Interfacial behaviour of wood plastic composite: effect of chemical treatment on wood fibres. Iranıan Polymer Journal, 19, 10811-818.
  • Gopal, M., Bhaduri, S. K., Banerjee S. K. and Sao, K. P. (1985). Acetylation of jute and infrared spectra of acetylated jute. Indian Journal of Textile Research, 10(68), 68-70.
  • Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H. and Kim, J. H. (2010). Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean. J. Chem. Eng. 27, 651-657.
  • Hill, C. A. S. (2006). Modifying the properties of wood, In: Wood Modification: Chemical, Thermal and Other Processes, John Wiley and Sons, Ltd., England.
  • Hosseinaei, O., Wang, S., Enayati, A. A. and Rials, T. G. (2012). Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(4), 686-694.
  • Ikhlef, S., Nekkaa, S., Guessoum, M. and Haddaoui, N. (2012). Effects of alkaline treatment on the mechanical and rheological properties of low-density polyethylene/spartium junceum flour composites. ISRN Polymer Science, Article ID 965101, 7 pages.
  • Jamil, M. S., Ahmad, I. and Abdullah, I. (2006). Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. Journal of Polymer Research, 13(4), 315-321.
  • Jiang, L., He, C., Fu, J. and Li, X. (2018). Wear behavior of alkali-treated sorghum straw fiber reinforced polyvinyl chloride composites in corrosive water conditions. BioResources, 13(2), 3362-3376.
  • John, M. J., Francis, B., Varughese, K. T. and Thomas, S. (2008). Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Part A: App. Sci. Man, 39, 352-363.
  • Kallakas, H., Shamim, M. A., Olutubo, T., Poltimäe, T., Krumme, A. and Kers, J. (2015). Effect of chemical modification of wood flour on the mechanical properties of wood-plastic composites. Agronomy Research, 13(3), 639-653.
  • Kamel, S. (2004). Preparation and properties of composites made from rice straw and poly (vinyl chloride)(PVC). Polymers for advanced technologies, 15(10), 612-616.
  • Khalil, H. A., Tehrani, M. A., Davoudpour, Y., Bhat, A. H., Jawaid, M. and Hassan, A. (2013). Natural fiber reinforced poly (vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356.
  • Kim, J. P., Yoon, T. H., Mun, S. P., Rhee, J. M. and Lee, J. S. (2006). Wood–polyethylene composites using ethylene–vinyl alcohol copolymer as adhesion promoter. Bioresource Technology, 97(3): 494-499.
  • Liu, X., Lv, S., Jiang, Y., Shi, J., Tan, H., Gu, J. and Zhang, Y. (2017). Effects of alkali treatment on the properties of WF/PLA composites. Journal of adhesion science and Technology, 31(10), 1151-1161.
  • Mohanty, A. K., Khan, M. A. and Hinrichsen, G. (2000). Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Composites Science and Technology, 60(7), 1115-1124.
  • Mylsamy, K. and Rajendran, I. (2010). Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. Journal of Reinforced Plastics and composites, 29(19), 2925-2935.
  • Nass, L. (1985). Encyclopedia of PVC. New York: Marcel Dekker.
  • Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D. and Talabi, S. I. (2019). Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites. Polymer Testing, 76, 192-198.
  • Owen, N. L. and Thomas, D. W. (1989). Infrared studies of “hard” and “soft” woods. Applied spectroscopy, 43(3), 451-455.
  • Pannu, A. S., Singh, S. and Dhawan, V. (2021). Effect of alkaline treatment on mechanical properties of biodegradable composite (BF/PLA) rod. Materials Today: Proceedings, 46, 9367-9371.
  • Parre, A., Karthikeyan, B., Balaji, A. and Udhayasankar, R. (2019). Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Materials Today: Proceedings, 22(3), 347-352.
  • Premalal, H. G., Ismail, H. and Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833-839.
  • Ray, D., Sarkar, B. K., Rana, A. K. and Bose, N. R. (2001). Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2), 129-135.
  • Reddy, K. O., Reddy, K. R. N., Zhang, J., Zhang, J. and Varada Rajulu, A. (2013). Effect of alkali treatment on the properties of century fiber. Journal of Natural Fibers, 10(3), 282-296.
  • Rodrigues, J., Faix, O. and Pereira, H. (1998). Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung, 52, 46–50.
  • Rout, J., Misra, M., Tripathy, S. S., Nayak, S. K. and Mohanty, A. K. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61(9), 1303-1310.
  • Rowell, R. M. (2006). Chemical modification of wood: A short review. Wood Matrl. Sci. Eng 1, 29-33.
  • Saini, G., Narula, A. K., Choudhary, V. and Bhardwaj, R. (2010). Effect of particle size and alkali treatment of sugarcane bagasse on thermal, mechanical, and morphological properties of PVC-bagasse composites. Journal of Reinforced Plastics and Composites, 29(5), 731-740.
  • Sgriccia, N., Hawley, M. C., and Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing, 39(10), 1632-1637.
  • Siddika, S., Mansura, F., Hasan, M. and Hassan, A. (2014). Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers, 15(5), 1023-1028.
  • Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A. and Zaman, H. M. D. K. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food, Agriculture and Environment, 8(2), 1103-1108.
  • Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R. J. I. P. and Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309-320.
  • Wirawan, R., Zainudin, E. S. and Sapuan, S. M. (2009). Mechanical properties of natural fibre reinforced PVC composites: a review. Sains Malaysiana, 38(4), 531-535.
  • Zhang, K., Cui, Y. and Yan, W. (2019). Thermal and three-body abrasion behaviors of alkali-treated eucalyptus fiber reinforced polyvinyl chloride composites. BioResources, 14(1), 1229-1240.

Effect of Alkaline Concentration on Mechanical Properties of Wood Flour Filled PVC Composites

Yıl 2022, Cilt: 24 Sayı: 1, 145 - 156, 15.04.2022
https://doi.org/10.24011/barofd.1065643

Öz

This study was carried out to determine the effect of modified wood flour on thermoplastic composites. For this purpose, wood flour treated with alkali (sodium hydroxide (NaOH)) at different concentrations (0-3-6-12%) were added to polyvinyl chloride (PVC) polymer to produce wood-PVC composites. In order to determine the effect of alkali treatment on the mechanical properties of wood-PVC composites, tensile strength, tensile modulus, flexural strength, flexural modulus and hardness values were determined. It was determined that the tensile strength, flexural strength and modulus of elasticity values of the composite samples containing alkali-treated wood flour were higher than those containing untreated wood flour. The highest tensile and flexural strength values were determined in the composite sample containing 6% NaOH treated wood flour. In addition, it was observed that the hardness values of the composite samples were not affected much by the alkali treatment. In addition, thermogravimetric analysis (TGA) results showed that alkali treatment caused an increase in the thermal stability of composite materials.

Kaynakça

  • ASTM D4703-10 (2010). Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, ASTM International, West Conshohocken, PA, USA.
  • ASTM D638-14 (2014). Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, USA.
  • Aziz, S. H. and Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 2–cashew nut shell liquid matrix. Composites Science and Technology, 64(9), 1231-1238.
  • Barreto, A. C. H., Rosa, D. S., Fechine, P. B. A. and Mazzetto, S. E. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites, Composites Part A, 42(5), 492-500.
  • Bartos, A., Anggono, J., Farkas, Á. E., Kun, D., Soetaredjo, F. E., Móczó, J., Antoni, A., Purwaningsih, H. and Pukánszky, B. (2020). Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549.
  • Clemons, C. (2002). Wood-plastic composites in the United States: The interfacing of two industries. Forest Products Journal. 52 (6),10-18.
  • Clemons, C. M. and Ibach, R. E. (2004). Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Products Journal. 54 (4), 50-57.
  • Cuebas, L., Bertolini, J. A., Barros, R. T. P. D., Cordeiro, A. O. T., Rosa, D. D. S. and Martins, C. R. (2020). The incorporation of untreated and alkali-treated banana fiber in SEBS composites. Polímeros, 30.
  • Faix, O. (1992). Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry, Ed. Lin, S.Y., Dence, C.W., Springer, pp. 83-109.
  • Faruk, O., Bledzki, A. K., Fink, H. P. and Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596.
  • Gassan, J. and Bledzki, A. K. (1999). Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology, 59(9), 1303-1309.
  • Ge, X. C., Li, X. H. and Meng, Y. Z. (2004). Tensile properties, morphology, and thermal behavior of PVC composites containing pine flour and bamboo flour. Journal of Applied Polymer Science, 93(4), 1804-1811.
  • Ghasemi, I. and Farsi, M. (2010). Interfacial behaviour of wood plastic composite: effect of chemical treatment on wood fibres. Iranıan Polymer Journal, 19, 10811-818.
  • Gopal, M., Bhaduri, S. K., Banerjee S. K. and Sao, K. P. (1985). Acetylation of jute and infrared spectra of acetylated jute. Indian Journal of Textile Research, 10(68), 68-70.
  • Gwon, J. G., Lee, S. Y., Chun, S. J., Doh, G. H. and Kim, J. H. (2010). Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean. J. Chem. Eng. 27, 651-657.
  • Hill, C. A. S. (2006). Modifying the properties of wood, In: Wood Modification: Chemical, Thermal and Other Processes, John Wiley and Sons, Ltd., England.
  • Hosseinaei, O., Wang, S., Enayati, A. A. and Rials, T. G. (2012). Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(4), 686-694.
  • Ikhlef, S., Nekkaa, S., Guessoum, M. and Haddaoui, N. (2012). Effects of alkaline treatment on the mechanical and rheological properties of low-density polyethylene/spartium junceum flour composites. ISRN Polymer Science, Article ID 965101, 7 pages.
  • Jamil, M. S., Ahmad, I. and Abdullah, I. (2006). Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. Journal of Polymer Research, 13(4), 315-321.
  • Jiang, L., He, C., Fu, J. and Li, X. (2018). Wear behavior of alkali-treated sorghum straw fiber reinforced polyvinyl chloride composites in corrosive water conditions. BioResources, 13(2), 3362-3376.
  • John, M. J., Francis, B., Varughese, K. T. and Thomas, S. (2008). Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Part A: App. Sci. Man, 39, 352-363.
  • Kallakas, H., Shamim, M. A., Olutubo, T., Poltimäe, T., Krumme, A. and Kers, J. (2015). Effect of chemical modification of wood flour on the mechanical properties of wood-plastic composites. Agronomy Research, 13(3), 639-653.
  • Kamel, S. (2004). Preparation and properties of composites made from rice straw and poly (vinyl chloride)(PVC). Polymers for advanced technologies, 15(10), 612-616.
  • Khalil, H. A., Tehrani, M. A., Davoudpour, Y., Bhat, A. H., Jawaid, M. and Hassan, A. (2013). Natural fiber reinforced poly (vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356.
  • Kim, J. P., Yoon, T. H., Mun, S. P., Rhee, J. M. and Lee, J. S. (2006). Wood–polyethylene composites using ethylene–vinyl alcohol copolymer as adhesion promoter. Bioresource Technology, 97(3): 494-499.
  • Liu, X., Lv, S., Jiang, Y., Shi, J., Tan, H., Gu, J. and Zhang, Y. (2017). Effects of alkali treatment on the properties of WF/PLA composites. Journal of adhesion science and Technology, 31(10), 1151-1161.
  • Mohanty, A. K., Khan, M. A. and Hinrichsen, G. (2000). Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites. Composites Science and Technology, 60(7), 1115-1124.
  • Mylsamy, K. and Rajendran, I. (2010). Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. Journal of Reinforced Plastics and composites, 29(19), 2925-2935.
  • Nass, L. (1985). Encyclopedia of PVC. New York: Marcel Dekker.
  • Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D. and Talabi, S. I. (2019). Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites. Polymer Testing, 76, 192-198.
  • Owen, N. L. and Thomas, D. W. (1989). Infrared studies of “hard” and “soft” woods. Applied spectroscopy, 43(3), 451-455.
  • Pannu, A. S., Singh, S. and Dhawan, V. (2021). Effect of alkaline treatment on mechanical properties of biodegradable composite (BF/PLA) rod. Materials Today: Proceedings, 46, 9367-9371.
  • Parre, A., Karthikeyan, B., Balaji, A. and Udhayasankar, R. (2019). Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Materials Today: Proceedings, 22(3), 347-352.
  • Premalal, H. G., Ismail, H. and Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833-839.
  • Ray, D., Sarkar, B. K., Rana, A. K. and Bose, N. R. (2001). Effect of alkali treated jute fibres on composite properties. Bulletin of Materials Science, 24(2), 129-135.
  • Reddy, K. O., Reddy, K. R. N., Zhang, J., Zhang, J. and Varada Rajulu, A. (2013). Effect of alkali treatment on the properties of century fiber. Journal of Natural Fibers, 10(3), 282-296.
  • Rodrigues, J., Faix, O. and Pereira, H. (1998). Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung, 52, 46–50.
  • Rout, J., Misra, M., Tripathy, S. S., Nayak, S. K. and Mohanty, A. K. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology, 61(9), 1303-1310.
  • Rowell, R. M. (2006). Chemical modification of wood: A short review. Wood Matrl. Sci. Eng 1, 29-33.
  • Saini, G., Narula, A. K., Choudhary, V. and Bhardwaj, R. (2010). Effect of particle size and alkali treatment of sugarcane bagasse on thermal, mechanical, and morphological properties of PVC-bagasse composites. Journal of Reinforced Plastics and Composites, 29(5), 731-740.
  • Sgriccia, N., Hawley, M. C., and Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites. Part A, Applied Science and Manufacturing, 39(10), 1632-1637.
  • Siddika, S., Mansura, F., Hasan, M. and Hassan, A. (2014). Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and Polymers, 15(5), 1023-1028.
  • Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A. and Zaman, H. M. D. K. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food, Agriculture and Environment, 8(2), 1103-1108.
  • Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R. J. I. P. and Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309-320.
  • Wirawan, R., Zainudin, E. S. and Sapuan, S. M. (2009). Mechanical properties of natural fibre reinforced PVC composites: a review. Sains Malaysiana, 38(4), 531-535.
  • Zhang, K., Cui, Y. and Yan, W. (2019). Thermal and three-body abrasion behaviors of alkali-treated eucalyptus fiber reinforced polyvinyl chloride composites. BioResources, 14(1), 1229-1240.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Research Articles
Yazarlar

Nasır Narlıoğlu 0000-0002-1295-6558

Yayımlanma Tarihi 15 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 1

Kaynak Göster

APA Narlıoğlu, N. (2022). Alkali Konsantrasyonunun Odun Unu Takviyeli PVC Kompozitlerin Mekanik Özelliklerine Etkisi. Bartın Orman Fakültesi Dergisi, 24(1), 145-156. https://doi.org/10.24011/barofd.1065643


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com