Araştırma Makalesi
BibTex RIS Kaynak Göster

Sedir Ağacının (Cedrus libani) Farklı Kısımlarından Üretilmiş Alçı Esaslı Levhaların Özellikleri. 1. Bölüm. Fiziksel ve Mekanik Özellikler

Yıl 2022, Cilt: 24 Sayı: 1, 121 - 132, 15.04.2022
https://doi.org/10.24011/barofd.1068056

Öz

Bu çalışmada, odun ilavesinin, alçı esaslı levhalarda su alma (WA) ve kalınlığına şişme (TS) özelliğini azaltıcı etki gösterdiği bulunmuştur. En düşük su alma oranı %41,56 ile sedir kabuk/ibre karışımından (KaI3; 3:2, ağırlık: ağırlık) üretilmiş levhalarda gözlemlenmiştir. Sadece kabuk-alçı (SKa6) ve kozalak-alçı (SKo6) ve ibre-alçı (SI6) karışımından üretilmiş deneme levhalarının kalınlığına şişme oranları sırasıyla %33,70, %21,70 ve %18,85, hesaplanmıştır. Ayrıca, yüzey sertlik (Shore D) değerleri genellikle levha karışımındaki odun oranı ile pozitif, fakat doğal yaşlandırma işlemine tutulmuş levhalarda ise negatif ilişkisi olduğu ve % -6.9 (SKa1) ile %-30.3 (SKa2) arasında azalmalar belirlenmiştir. Sedir odun/kozalak, (SKo); sedir odun/ibre (SI) ve sedir kozalak/ibre (KoI) karışımlarından üretilmiş levhaların yapışma direnç değerleri (IB), standart değer olan 0.28 N/mm2 den daha düşük hesaplanmıştır. En yüksek yapışma direnci 0.48 N/mm2 olarak 1:4 (ağırlık/ağırlık) oranında sedir odun/sedir kabuk (SKa5) örneğinde belirlenmiştir. En yüksek eğilme direnci ise (MOR) 1.32 N/mm2 olarak 4:1 (ağırlık/ağırlık) oranında sedir odun/sedir kabuk (SKa5) örneğinde belirlenmiştir. Bu mekanik değerler deneysel levha hazırlama aşamaları ile yakından ilişkili olduğu zira çok basamaklı proseslerde (ıslatma, taslak oluşturma, presleme ve kurutma), ilave edilen güçlendirme elamanlarının etkisini engelleyerek matris yapıda uygun direnç oluşumunu etkileyebilirler.

Kaynakça

  • Çam, E. (2019). Investigation of the properties of gypsum composites produced from cedrus tree and its components, Isparta University of Applied Sciences, Graduate Education Institute, MSc. Thesis, (in Turkish), Isparta. 76p.
  • Dai, D. and Fan, M. (2015). Preparation of bio-composite from wood sawdust and gypsum. Industrial Crops and Products, 74, 417-424.
  • De Araújo, P. C., Arruda, L. M., Del Menezzi, C. H., Teixeira, D. E. and de Souza, M. R. (2011). Lig-nocellulosic composites from Brazilian giant bamboo (Guadua magna): Part 2: Properties of cement and gypsum bonded particleboards. Maderas. Ciencia y tecnología, 13(3), 297-306.
  • Herhández, O.F., Bollatti, M.R., Rio, M. and Landa, B.P. (1999). Development of cork-gypsum com-posites for building applications, Construction and Building Materials, 13, 179-186.
  • Khazaei, J. (2008). Water absorption characteristics of three wood varieties. Cercetări Agronomice în Moldova, 41, (2) 5-16.
  • Morales-Conde, M. J., Rodríguez-Liñán, C. and Pedreño-Rojas, M. A. (2016). Physical and mechani-cal properties of wood-gypsum composites from demolition material in rehabilitation works. Construction and Building Materials, 114, 6-14.
  • Sahin, H. T., Demir, İ., and Yalçın, Ö. Ü. (2019). Properties of Gypsum Boards Made of Mixtures of Wood and Rice Straw. International Research Journal of Pure and Applied Chemistry, 1-10.
  • Şahin, H. and Demir, İ. (2019). Gypsum-Based Boards Made from Mixtures of Waste Cellulosic Sources: Part 1. Physical and Mechanical Properties. Avrupa Bilim ve Teknoloji Dergisi, (16), 567-576.
  • Shiroma, L., Camarini, G. and Beraldo, A. L. (2016). Effect of wood particle treatment on the proper-ties of gypsum plaster pastes and composites. Matéria (Rio de Janeiro), 21(4): 1032-1044.
  • Siau, J. F. (1995). Wood: Influence of moisture on physical properties. Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University.
  • Van Elten, G.J. (1996). Innovation in the Production of Cement-Bonded Particleboard and Wood-Wool Cement Board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Youngquist, J. A. (1999). Wood-based Composites and Panel Products, In: Wood handbook: wood as an engineering material, USDA Forest Service, Forest Products Laboratory, General technical re-port FPL; GTR-113: Pp. 10.1-10.31.
  • Wilson, M. A., Hoff, W. D. and Hall, C. (1995a). Water movement in porous building materials—XIII. Absorption into a two-layer composite. Building and Environment, 30(2), 209-219.
  • Wilson, M. A., Hoff, W. D. and Hall, C. (1995b). Water movement in porous building materials—XIV. Absorption into a two-layer composite (SA< SB). Building and Environment, 30(2), 221-227.

Properties of Gypsum Boards Made with Cedrus Tree (Cedrus libani) Components. Part 1. Physical and Mechanical Properties

Yıl 2022, Cilt: 24 Sayı: 1, 121 - 132, 15.04.2022
https://doi.org/10.24011/barofd.1068056

Öz

In this study, it was found that the addition of wood had a reducing effect on water absorption (WA) and thickness swelling (TS) properties in gypsum-based boards. The lowest WA value of 41.56% was found sample prepared with cedrus’s bark/needle mixture (KaI3; 3:2 by weight). It has also been realized that experimental boards made only bark-gypsum (SKa6), cone-gypsum (SKo6) and needle-gypsum (SI6) proportions show Thickness Swelling (TS) values of 33.70%, 21.70% and 18.85%, respectively. However, the surface hardness (Shore D) has usually correlated with wood content but natural weathering negatively effects hardness that lowering from -6.9% (SKa1) to -30.3% (SKa2) in all typse experimental boards. It was found that panels produced with cedrus wood/cone (SKo); cedrus wood/needle (SI) and cedrus cone/needle (KoI) proportions have no higher values than standard Internal Bond (IB) value of 0.28 N/mm2. But the highest IB value of 0.48 N/mm2 was observed for a sample of SKa5 that produced with a ratio of 1:4 by cedrus wood/bark proportions (w/w). Moreover, the highest bending strength (MOR) values of 1.32 N/mm2 were calculated with SKa2 sample that produced with ratio of 4:1 by cedrus wood/bark proportions (w/w). These mechanical properties are probably related to experimental board manufacturing process, which consists of multi stage processing (slushing, soaking, formation, pressing and drying) may effect hindering reinforcement elements to develop the network matrix strength properly.

Kaynakça

  • Çam, E. (2019). Investigation of the properties of gypsum composites produced from cedrus tree and its components, Isparta University of Applied Sciences, Graduate Education Institute, MSc. Thesis, (in Turkish), Isparta. 76p.
  • Dai, D. and Fan, M. (2015). Preparation of bio-composite from wood sawdust and gypsum. Industrial Crops and Products, 74, 417-424.
  • De Araújo, P. C., Arruda, L. M., Del Menezzi, C. H., Teixeira, D. E. and de Souza, M. R. (2011). Lig-nocellulosic composites from Brazilian giant bamboo (Guadua magna): Part 2: Properties of cement and gypsum bonded particleboards. Maderas. Ciencia y tecnología, 13(3), 297-306.
  • Herhández, O.F., Bollatti, M.R., Rio, M. and Landa, B.P. (1999). Development of cork-gypsum com-posites for building applications, Construction and Building Materials, 13, 179-186.
  • Khazaei, J. (2008). Water absorption characteristics of three wood varieties. Cercetări Agronomice în Moldova, 41, (2) 5-16.
  • Morales-Conde, M. J., Rodríguez-Liñán, C. and Pedreño-Rojas, M. A. (2016). Physical and mechani-cal properties of wood-gypsum composites from demolition material in rehabilitation works. Construction and Building Materials, 114, 6-14.
  • Sahin, H. T., Demir, İ., and Yalçın, Ö. Ü. (2019). Properties of Gypsum Boards Made of Mixtures of Wood and Rice Straw. International Research Journal of Pure and Applied Chemistry, 1-10.
  • Şahin, H. and Demir, İ. (2019). Gypsum-Based Boards Made from Mixtures of Waste Cellulosic Sources: Part 1. Physical and Mechanical Properties. Avrupa Bilim ve Teknoloji Dergisi, (16), 567-576.
  • Shiroma, L., Camarini, G. and Beraldo, A. L. (2016). Effect of wood particle treatment on the proper-ties of gypsum plaster pastes and composites. Matéria (Rio de Janeiro), 21(4): 1032-1044.
  • Siau, J. F. (1995). Wood: Influence of moisture on physical properties. Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University.
  • Van Elten, G.J. (1996). Innovation in the Production of Cement-Bonded Particleboard and Wood-Wool Cement Board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Youngquist, J. A. (1999). Wood-based Composites and Panel Products, In: Wood handbook: wood as an engineering material, USDA Forest Service, Forest Products Laboratory, General technical re-port FPL; GTR-113: Pp. 10.1-10.31.
  • Wilson, M. A., Hoff, W. D. and Hall, C. (1995a). Water movement in porous building materials—XIII. Absorption into a two-layer composite. Building and Environment, 30(2), 209-219.
  • Wilson, M. A., Hoff, W. D. and Hall, C. (1995b). Water movement in porous building materials—XIV. Absorption into a two-layer composite (SA< SB). Building and Environment, 30(2), 221-227.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Research Articles
Yazarlar

Halil Turgut Şahin 0000-0001-5633-6505

Esen Cam Bu kişi benim

Yayımlanma Tarihi 15 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 1

Kaynak Göster

APA Şahin, H. T., & Cam, E. (2022). Properties of Gypsum Boards Made with Cedrus Tree (Cedrus libani) Components. Part 1. Physical and Mechanical Properties. Bartın Orman Fakültesi Dergisi, 24(1), 121-132. https://doi.org/10.24011/barofd.1068056


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com