Derleme
BibTex RIS Kaynak Göster

Masa Tenisi Raket Tahtası Üretimi ve Özellikleri

Yıl 2022, Cilt: 24 Sayı: 2, 394 - 404, 15.08.2022
https://doi.org/10.24011/barofd.1085278

Öz

1800’lü yılların sonlarında ortaya çıkan masa tenisi pek çok spor dalında olduğu gibi ekipmanların gelişimiyle
birlikte değişim ve gelişim göstermiştir. İlk zamanlarda parşömen kaplı uzun saplı raketler ile mantar veya kauçuk
toplarla oynanmıştır. 1930’larda sert kauçuk kaplı raketin icadıyla oyun değişmeye başlamış ve kompozit
malzemelerin yaygınlaşmasıyla masa tenisi raketi de değişmiştir. Ahşaptan üretilen raket tahtası tek katmandan
oluşabileceği gibi daha çok 3-7 katmandan oluşmaktadır. Raket tahtası ortalama olarak 17 cm uzunluğunda ve 15 cm
genişliğinde üretilmektedir. Ancak üretimlerinde şekil, boyut ve ağırlık yönüyle bir sınırlama olmadığından oyuncular
raket tahtalarını oyun tarzlarına göre seçmektedir. Uluslararası Masa Tenisi Federasyonu (ITTF) yönetmeliklerine
göre, raket tahtası kalınlığının en az %85'i ahşaptan oluşmalı ve yüzeyler düz-pürüzsüz ve sert olmalıdır. Darbe emilim
enerji değeri yüksek olan ağaç türleri masa tenisi raket tahtası üretimine daha uygundur. Raketin topa çarpma
anında oluşan vibro-akustik özellik ile raket tahtası arasında önemli bir ilişki bulunmaktadır. Masa tenisi raketi
üretiminde kullanılacak ahşap malzemenin uygunluğunun belirlenmesinde yoğunluk, çeşitli sertlik dirençleri, basınç
mukavemeti, eğilme direnci, darbe emilim enerjisi ve vibro-akustik özellikleri bilinmelidir. Üretiminde Hinoki,
Limba, Balsa, Kiri (Paulownia), Dişbudak, Ladin, Ihlamur, Ceviz gibi çeşitli ağaç türleri yaygın olarak
kullanılmaktadır.

Kaynakça

  • Amin, M. H. M., Arifin, A. M. T., Hassan, M. F., Haq, R. H. A., Rahman, M. N. A., Ismail, A. E., and Ismail, R. (2017, October). An evaluation of mechanical properties on kenaf natural fiber/polyester composite structures as table tennis blade. In Journal of Physics: Conference Series (Vol. 914, No. 1, p. 012015). IOP Publishing.
  • Arifin, A. M. T., Hassan, M. F., Ismail, A. E., Rahim, M. Z., Ibrahim, M. R., Haq, R. A., .and Amin, M. H. M. (2017, August). Investigation on suitability of natural fibre as replacement material for table tennis blade. In IOP Conference Series: Materials Science and Engineering (Vol. 226, No. 1, p. 012037). IOP Publishing.
  • Bao, W., Xiao, Z., and Xie, Y. (2015). Effect of Chemical Modification of Wood Veneer on the Performance of Table-tennis Racket. Journal of Northeast Forestry University, 43(10), 92-96.
  • Buragohain, M. K. (2017). Composite structures: design, mechanics, analysis, manufacturing, and testing. CRC press.
  • Heaton, J. (2012). Table Tennis: Skills, Techniques, Tactics. Crowood.
  • Iino, Y., and Kojima, T. (2016). Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand. Journal of Sports Sciences, 34(8), 721-729.
  • İstek, A., Özlüsoylu, İ., and Kızılkaya, A. (2017). Türkiye ahşap esaslı levha sektör analizi. Bartın Orman Fakültesi Dergisi, 19(1), 132-138.
  • Kawazoe, Y. (1992). Ball/racket impact and computer aided design of rackets. International Journal of Table Tennis Sciences, 1, 9-18.
  • Liu, W. (1996). Improvements in racket shape promote development and popularity of table tennis. International Journal of Table Tennis Sciences, No. 3, 145-149.
  • Lu, X., He, Q., Yao, Y., Zhang, H., Lu, K., & Ju, Z. (2016). The study of the natural frequency and its impact factors of two types of international common wood for table tennis racket blade. Journal of Forestry Engineering, 1(1), 16-20.
  • Manin, L., Poggi, M., and Havard, N. (2012a). Vibrations of table tennis racket composite wood blades: modeling and experiments. Procedia Engineering, 34, 694-699.
  • Manin, L., Gabert, F., Poggi, M., and Havard, N. (2012b). Vibro-acoustic of table tennis rackets at ball impact: Influence of the blade plywood composition. Procedia Engineering, 34, 604-609.
  • Manin, L., Poggi, M., Bertrand, C., and Havard, N. (2014). Vibro-acoustic of table tennis rackets. Influence of the plywood design parameters. Experimental and sensory analyses. Procedia Engineering, 72, 374-379.
  • McAfee, R. (2009). Table tennis: Steps to success. Human Kinetics.
  • Miyazawa, Y., Hadano, A., and Tanaka, K. (2020). Effects of Pimple Height of a Table Tennis Rubber on Ball Rebound Behavior. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 49, No. 1, p. 55).
  • Rinaldi, R. G., Manin, L., Bonnard, C., Drillon, A., Lourenco, H., and Havard, N. (2016). Non linearity of the ball/rubber impact in table tennis: experiments and modeling. Procedia engineering, 147, 348-353.
  • Russell, D. A. (2018). Acoustics of ping-pong: Vibroacoustic analysis of table tennis rackets and balls. Journal of Sports Sciences, 36(23), 2644-2652.
  • Sun, W. M., Zhang, S. Q., and Hao, S. R. (2012). The Soleplate Materials and Performance of Table Tennis Bat with the Composite Properties of Materials in Material Engineering. In Advanced Materials Research (Vol. 583, pp. 232-235). Trans Tech Publications Ltd.
  • Tiefenbacher, K., and Durey, A. (1994). The impact of the table tennis ball on the racket (backside coverings). Int. J. Table Tennis Sci, 2, 1-14.
  • URL1 2022, https://www.ittf.com/history/documents/historyoftabletennis/
  • URL2 2022, https://en.wikipedia.org/wiki/Table_tennis
  • URL3 2022, https://www.allabouttabletennis.com/table-tennis-rubber.html
  • URL4 2022, https://joolausa.com/a-guide-to-understanding-table-tennis-blades/
  • URL5 2022, https://equipments.ittf.com/#/equipments/technical_leaflets
  • URL6 2022, https://blog.tabletennis11.com/table-tennis-racket-history-evolution
  • URL7 2022, https://joolausa.com/a-guide-to-understanding-table-tennis-blades/
  • URL8 2022, https://stervinou.net/ttbdb/lexik.php
  • URL9 2022, http://www.pofepa.gr/uploads/5/7/2/5/5725823/wood-types-and-materials-for-table-tennis-blades.pdf
  • URL10 2022, https://www.yasaka.se/blade-production/
  • URL11 2022, https://tabletennis-reviews.com/complete-table-tennis-blade-making-process/
  • Wang, J. L. (2012). Application of composite materials on sports equipments. In Applied Mechanics and Materials (Vol. 155, pp. 903-906). Trans Tech Publications Ltd.
  • Wang, Z. H., Yuan, R. J., and Fan, X. B. (2012). The Wood Composite Materials of Table Tennis Bat and Batting Techniques. In Advanced Materials Research (Vol. 583, pp. 49-52). Trans Tech Publications Ltd.
  • Varenberg, M., and Varenberg, A. (2012). Table tennis rubber: tribological characterization. Tribology Letters, 47(1), 51-56.
  • Yu, M. (2014). Comparative Analysis on Performance of Table Tennis Racket's Bottom of Different Materials. In Applied Mechanics and Materials (Vol. 687, pp. 4248-4251). Trans Tech Publications Ltd.

Table Tennis Blade Production and Features

Yıl 2022, Cilt: 24 Sayı: 2, 394 - 404, 15.08.2022
https://doi.org/10.24011/barofd.1085278

Öz

Table tennis, which emerged in the late 1800s, has changed and developed with equipment development,
as in many sports. In the early days, table tennis was played with parchment-covered long-handled rackets and cork
or rubber balls. The game started to change with the invention of the hard rubber-coated racket in the 1930s, and the
table tennis racket also changed with the spread of composite materials. A racket blade made of wood can consist of
a single layer, or it mostly consists of 3-7 layers. The racket blade is produced 17 cm long and 15 cm wide on average.
However, since there is no limitation in shape, size, and weight in their production, players choose racket blades
according to their playing style. According to the International Table Tennis Federation (ITTF) regulations, at least
85% of the racket blade thickness must be made of wood, and the surfaces must be smooth and hard. Wood species
with high impact absorption energy value are more suitable for table tennis blade production. There is an important
relationship between the vibro-acoustic feature when the racket hits the ball and the racket blade. Density, hardness
resistances, compressive strength, bending resistance, impact absorption energy, vibro-acoustic properties should be
known in determining the suitability of the wood material to be used in the production of table tennis rackets. Various
tree species such as Hinoki, Limba, Balsa, Kiri (Paulownia), Ash, Spruce, Linden, and Walnut are widely used in
racket blades production.

Kaynakça

  • Amin, M. H. M., Arifin, A. M. T., Hassan, M. F., Haq, R. H. A., Rahman, M. N. A., Ismail, A. E., and Ismail, R. (2017, October). An evaluation of mechanical properties on kenaf natural fiber/polyester composite structures as table tennis blade. In Journal of Physics: Conference Series (Vol. 914, No. 1, p. 012015). IOP Publishing.
  • Arifin, A. M. T., Hassan, M. F., Ismail, A. E., Rahim, M. Z., Ibrahim, M. R., Haq, R. A., .and Amin, M. H. M. (2017, August). Investigation on suitability of natural fibre as replacement material for table tennis blade. In IOP Conference Series: Materials Science and Engineering (Vol. 226, No. 1, p. 012037). IOP Publishing.
  • Bao, W., Xiao, Z., and Xie, Y. (2015). Effect of Chemical Modification of Wood Veneer on the Performance of Table-tennis Racket. Journal of Northeast Forestry University, 43(10), 92-96.
  • Buragohain, M. K. (2017). Composite structures: design, mechanics, analysis, manufacturing, and testing. CRC press.
  • Heaton, J. (2012). Table Tennis: Skills, Techniques, Tactics. Crowood.
  • Iino, Y., and Kojima, T. (2016). Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand. Journal of Sports Sciences, 34(8), 721-729.
  • İstek, A., Özlüsoylu, İ., and Kızılkaya, A. (2017). Türkiye ahşap esaslı levha sektör analizi. Bartın Orman Fakültesi Dergisi, 19(1), 132-138.
  • Kawazoe, Y. (1992). Ball/racket impact and computer aided design of rackets. International Journal of Table Tennis Sciences, 1, 9-18.
  • Liu, W. (1996). Improvements in racket shape promote development and popularity of table tennis. International Journal of Table Tennis Sciences, No. 3, 145-149.
  • Lu, X., He, Q., Yao, Y., Zhang, H., Lu, K., & Ju, Z. (2016). The study of the natural frequency and its impact factors of two types of international common wood for table tennis racket blade. Journal of Forestry Engineering, 1(1), 16-20.
  • Manin, L., Poggi, M., and Havard, N. (2012a). Vibrations of table tennis racket composite wood blades: modeling and experiments. Procedia Engineering, 34, 694-699.
  • Manin, L., Gabert, F., Poggi, M., and Havard, N. (2012b). Vibro-acoustic of table tennis rackets at ball impact: Influence of the blade plywood composition. Procedia Engineering, 34, 604-609.
  • Manin, L., Poggi, M., Bertrand, C., and Havard, N. (2014). Vibro-acoustic of table tennis rackets. Influence of the plywood design parameters. Experimental and sensory analyses. Procedia Engineering, 72, 374-379.
  • McAfee, R. (2009). Table tennis: Steps to success. Human Kinetics.
  • Miyazawa, Y., Hadano, A., and Tanaka, K. (2020). Effects of Pimple Height of a Table Tennis Rubber on Ball Rebound Behavior. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 49, No. 1, p. 55).
  • Rinaldi, R. G., Manin, L., Bonnard, C., Drillon, A., Lourenco, H., and Havard, N. (2016). Non linearity of the ball/rubber impact in table tennis: experiments and modeling. Procedia engineering, 147, 348-353.
  • Russell, D. A. (2018). Acoustics of ping-pong: Vibroacoustic analysis of table tennis rackets and balls. Journal of Sports Sciences, 36(23), 2644-2652.
  • Sun, W. M., Zhang, S. Q., and Hao, S. R. (2012). The Soleplate Materials and Performance of Table Tennis Bat with the Composite Properties of Materials in Material Engineering. In Advanced Materials Research (Vol. 583, pp. 232-235). Trans Tech Publications Ltd.
  • Tiefenbacher, K., and Durey, A. (1994). The impact of the table tennis ball on the racket (backside coverings). Int. J. Table Tennis Sci, 2, 1-14.
  • URL1 2022, https://www.ittf.com/history/documents/historyoftabletennis/
  • URL2 2022, https://en.wikipedia.org/wiki/Table_tennis
  • URL3 2022, https://www.allabouttabletennis.com/table-tennis-rubber.html
  • URL4 2022, https://joolausa.com/a-guide-to-understanding-table-tennis-blades/
  • URL5 2022, https://equipments.ittf.com/#/equipments/technical_leaflets
  • URL6 2022, https://blog.tabletennis11.com/table-tennis-racket-history-evolution
  • URL7 2022, https://joolausa.com/a-guide-to-understanding-table-tennis-blades/
  • URL8 2022, https://stervinou.net/ttbdb/lexik.php
  • URL9 2022, http://www.pofepa.gr/uploads/5/7/2/5/5725823/wood-types-and-materials-for-table-tennis-blades.pdf
  • URL10 2022, https://www.yasaka.se/blade-production/
  • URL11 2022, https://tabletennis-reviews.com/complete-table-tennis-blade-making-process/
  • Wang, J. L. (2012). Application of composite materials on sports equipments. In Applied Mechanics and Materials (Vol. 155, pp. 903-906). Trans Tech Publications Ltd.
  • Wang, Z. H., Yuan, R. J., and Fan, X. B. (2012). The Wood Composite Materials of Table Tennis Bat and Batting Techniques. In Advanced Materials Research (Vol. 583, pp. 49-52). Trans Tech Publications Ltd.
  • Varenberg, M., and Varenberg, A. (2012). Table tennis rubber: tribological characterization. Tribology Letters, 47(1), 51-56.
  • Yu, M. (2014). Comparative Analysis on Performance of Table Tennis Racket's Bottom of Different Materials. In Applied Mechanics and Materials (Vol. 687, pp. 4248-4251). Trans Tech Publications Ltd.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Review Articles and Editorials
Yazarlar

Avni Yıldızbaş 0000-0001-5276-1627

İsmail Özlüsoylu 0000-0002-0391-4794

Abdullah İstek 0000-0002-3357-9245

Yayımlanma Tarihi 15 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 2

Kaynak Göster

APA Yıldızbaş, A., Özlüsoylu, İ., & İstek, A. (2022). Table Tennis Blade Production and Features. Bartın Orman Fakültesi Dergisi, 24(2), 394-404. https://doi.org/10.24011/barofd.1085278


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com