Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyo-kökenli organik faz değişim malzemeleri ile emprenye edilen odun örneklerinin enerji depolama özelliklerinin incelenmesi

Yıl 2025, Cilt: 27 Sayı: 1, 118 - 126, 25.04.2025
https://doi.org/10.24011/barofd.1238857

Öz

Bu çalışma, yenilenebilir biyomalzemelerin sürdürülebilir yapı malzemeleri olarak kullanımını artırmak amacıyla, organik faz değişim malzemeleri (FDM) ile emprenye edilen kavak odununun enerji depolama özelliklerini incelemektedir. Çalışmada faz değişim malzemesi olarak hindistan cevizi yağı (HC) ve laurik asit (LA) kullanılmış, farklı oranlarda karışımlar oluşturularak emprenye işlemi gerçekleştirilmiştir. Hazırlanan örnekler, vakum ve atmosferik basınç koşullarında emprenye edilmiş ve ağırlık artışları hesaplanmıştır. Emprenye edilen örneklerin kimyasal, termal ve fiziksel özellikleri FTIR, DSC, XRD ve TGA analiz yöntemleriyle karakterize edilmiştir. HC ile emprenye edilen örneklerde %162,97 ile en yüksek ağırlık artışı elde edilmiştir. FTIR analizleri, emprenye işleminin kimyasal bir değişim yaratmadığını, yalnızca fiziksel bir etkileşim gerçekleştiğini ortaya koymuştur. DSC analizlerinde, LA ve HC karışımının (FDM4) erime ve donma sıcaklıklarını optimize ettiği ve enerji depolama kapasitesini artırdığı belirlenmiştir. TGA sonuçları, HC'nin termal dayanıklılık açısından daha iyi performans gösterdiğini ortaya koymuştur. FDM’ler ile emprenye edilen odun örneklerinin enerji depolama özelliklerinin geliştirildiği ve bu yöntemle çevre dostu, enerji verimli yapı malzemelerinin üretimine olanak sağlandığı görülmüştür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012301579

Teşekkür

Bu çalışma, 2209-1919B012301579 Proje numarası altında Türkiye Bilimsel ve Araştırma Kurumu (TÜBİTAK) tarafından finanse edilmiştir. Eda Zorlu lisans öğrencisidir ve proje yürütücüsü olarak görev yapmıştır.

Kaynakça

  • Agyenim, F., Hewitt, N. J., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615–628. https://doi.org/10.1016/j.rser.2009.10.015
  • Amiri, A., Ottelin, J., Sorvari, J., & Junnila, S. (2020). Cities as carbon sinks—classification of wooden buildings. Environmental Research Letters, 15(9), 094076. https://doi.org/10.1088/1748-9326/aba134
  • Can, A. (2023). Preparation, characterization, and thermal properties of microencapsulated palmitic acid with ethyl cellulose shell as phase change material impregnated wood. Journal of Energy Storage, 66, 107382. https://doi.org/10.1016/j.est.2023.107382
  • Can, A., & Žigon, J. (2022). n-Heptadecane-impregnated wood as a potential material for energy-saving buildings. Forests, 13(12), 2137. https://doi.org/10.3390/f13122137
  • Chinnasamy, V., & Appukuttan, S. (2019). Preparation and thermal properties of lauric acid/myristyl alcohol as a novel binary eutectic phase change material for indoor thermal comfort. Energy Storage, 1(5), e80. https://doi.org/10.1002/est2.80
  • Falk, R. H. (2009). Wood as a sustainable building material. Forest Products Journal, 59(9), 6–12. Erişim Linki: https://research.fs.usda.gov/treesearch/37431
  • Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., MacDowell, N., Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO₂ utilization and removal. Nature, 575(7781), 87–97. https://doi.org/10.1038/s41586-019-1681-6
  • Liang, J., Zhimeng, L., Ye, Y., Yanjun, W., Jingxin, L., & Changlin, Z. (2018). Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energy and Buildings, 171, 88–99. https://doi.org/10.1016/j.enbuild.2018.04.044
  • Ma, L., Guo, C., Ou, R., Sun, L., Wang, Q., & Li, L. (2018). Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy & Fuels, 32, 5453–5461. https://doi.org/10.1021/acs.energyfuels.7b03933
  • Ma, L., Wang, Q., & Li, L. (2019). Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Solar Energy Materials and Solar Cells, 194, 215–221. https://doi.org/10.1016/j.solmat.2019.02.026
  • Mohamad Amini, M. H., Temiz, A., Hekimoğlu, G., Köse Demirel, G., & Sarı, A. (2022). Properties of Scots pine wood impregnated with capric acid for potential energy saving building material. Holzforschung, 76(8), 744–753. https://doi.org/10.1515/hf-2022-0007
  • Omer, M. A., & Noguchi, T. (2020). A conceptual framework for understanding the contribution of building materials in the achievement of sustainable development goals (SDGs). Sustainable Cities and Society, 52, 101869. https://doi.org/10.1016/j.scs.2019.101869
  • Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., & Allwood, J. (2017). The wood from the trees: the use of timber in construction. Renew Sustain Energy Rev, 68, 333–359. https://doi.org/10.1016/j.rser.2016.09.107
  • Safira, L., Putra, N., Trisnadewi, T., Kusrini, E., & Mahlia, T. M. I. (2020). Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications. International Journal of Low-Carbon Technologies, 15(4), 629–636. https://doi.org/10.1093/ijlct/ctaa018
  • Sari, A., Hekimoğlu, G., & Tyagi, V. V. (2020). Low-cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage. Energy, 195, 116983. https://doi.org/10.1016/j.energy.2020.116983
  • Sari, A., Karaipekli, A., & Alkan, C. (2009). Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J, 155, 899–904. https://doi.org/10.1016/j.cej.2009.09.005
  • Sharma, A., Tyagi, V., Chen, C., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345. https://doi.org/10.1016/j.rser.2007.10.005
  • Tatsidjodoung, P., Le Pierrès, N., & Luo, L. (2013). A review of potential materials for thermal energy storage in building applications. Renewable and Sustainable Energy Reviews, 18, 327–349. https://doi.org/10.1016/j.rser.2012.10.025
  • Temiz, A., Hekimoğlu, G., Köse Demirel, G., & Sarı, A. (2020). Phase change material impregnated wood for passive thermal management of timber buildings. International Journal of Energy Research, 44, 10495–10505. https://doi.org/10.1002/er.5679
  • Toppinen, A., Röhr, A., Pätäri, S., Lähtinen, K., & Toivonen, R. (2018). The future of wooden multistory construction in the forest bioeconomy–a Delphi study from Finland and Sweden. Journal of Forest Economics, 31, 3–10. https://doi.org/10.1016/j.jfe.2017.05.001
  • Wen, B., Musa, S. N., Onn, C. C., Ramesh, S., Liang, L., Wang, W., & Ma, K. (2020). The role and contribution of green buildings on sustainable development goals. Building and Environment, 185, 107091. https://doi.org/10.1016/j.buildenv.2020.107091
  • Xie, N., Huang, Z., Luo, Z., Gao, X., Fang, Y., & Zhang, Z. (2017). Inorganic salt hydrate for thermal energy storage. Applied Sciences, 7(12), 12. https://doi.org/10.3390/app7121317
  • Yang, H., Wang, Y., Liu, Z., Liang, D., Liu, F., Zhang, W., Di, X., Wang, C., Ho, S. H., & Chen, W. H. (2017). Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage. Bioresource and Bioprocessing, 4, 1–12. https://doi.org/10.1186/s40643-017-0182-4
  • Yang, H., Wang, Y., Yu, Q., Cao, G., Yang, R., Ke, J., Di, X., Liu, F., Zhang, W., & Wang, C. (2018). Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Applied Energy, 212, 455–464. https://doi.org/10.1016/j.apenergy.2017.12.006
  • Yunus, W. M. M., Fen, Y. W., & Yee, L. M. (2009). Refractive index and Fourier transform infrared spectra of virgin coconut oil and virgin olive oil. American Journal of Applied Sciences, 6(2), 328. https://doi.org/10.3844/ajassp.2009.328.331
  • Zhu, Y., Wang, W., & Cao, J. (2014). Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid. BioResources, 9(2), 2431–2445. https://doi.org/10.15376/biores.9.2.2431-2445

Investigation of energy storage properties of wood samples impreg-nated with bio-based organic phase change materials

Yıl 2025, Cilt: 27 Sayı: 1, 118 - 126, 25.04.2025
https://doi.org/10.24011/barofd.1238857

Öz

This study investigates the energy storage properties of poplar wood impregnated with organic phase change materials (PCMs) to enhance the use of renewable biomaterials as sustainable construction materials. Coconut oil (HC) and lauric acid (LA) were used as phase change materials, and different ratios of mixtures were prepared for impregnation. The prepared samples were impregnated under vacuum and atmospheric pressure conditions, and weight gain was calculated. The chemical, thermal, and physical properties of the impregnated samples were characterized using FTIR, DSC, XRD, and TGA analysis methods. The results showed that the highest weight gain, 162.97%, was obtained in samples impregnated with HC. FTIR analyses revealed that the impregnation process caused no chemical changes, but only physical interactions. DSC analyses showed that the LA and HC mixture (FDM4) optimized melting and freezing temperatures, enhancing energy storage capacity. TGA results demonstrated that HC exhibited better thermal stability compared to other materials. The findings indicate that the energy storage properties of wood samples impregnated with PCMs have been significantly improved, enabling the production of eco-friendly, energy-efficient construction materials.

Proje Numarası

1919B012301579

Kaynakça

  • Agyenim, F., Hewitt, N. J., Eames, P., & Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615–628. https://doi.org/10.1016/j.rser.2009.10.015
  • Amiri, A., Ottelin, J., Sorvari, J., & Junnila, S. (2020). Cities as carbon sinks—classification of wooden buildings. Environmental Research Letters, 15(9), 094076. https://doi.org/10.1088/1748-9326/aba134
  • Can, A. (2023). Preparation, characterization, and thermal properties of microencapsulated palmitic acid with ethyl cellulose shell as phase change material impregnated wood. Journal of Energy Storage, 66, 107382. https://doi.org/10.1016/j.est.2023.107382
  • Can, A., & Žigon, J. (2022). n-Heptadecane-impregnated wood as a potential material for energy-saving buildings. Forests, 13(12), 2137. https://doi.org/10.3390/f13122137
  • Chinnasamy, V., & Appukuttan, S. (2019). Preparation and thermal properties of lauric acid/myristyl alcohol as a novel binary eutectic phase change material for indoor thermal comfort. Energy Storage, 1(5), e80. https://doi.org/10.1002/est2.80
  • Falk, R. H. (2009). Wood as a sustainable building material. Forest Products Journal, 59(9), 6–12. Erişim Linki: https://research.fs.usda.gov/treesearch/37431
  • Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., MacDowell, N., Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO₂ utilization and removal. Nature, 575(7781), 87–97. https://doi.org/10.1038/s41586-019-1681-6
  • Liang, J., Zhimeng, L., Ye, Y., Yanjun, W., Jingxin, L., & Changlin, Z. (2018). Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energy and Buildings, 171, 88–99. https://doi.org/10.1016/j.enbuild.2018.04.044
  • Ma, L., Guo, C., Ou, R., Sun, L., Wang, Q., & Li, L. (2018). Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy & Fuels, 32, 5453–5461. https://doi.org/10.1021/acs.energyfuels.7b03933
  • Ma, L., Wang, Q., & Li, L. (2019). Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Solar Energy Materials and Solar Cells, 194, 215–221. https://doi.org/10.1016/j.solmat.2019.02.026
  • Mohamad Amini, M. H., Temiz, A., Hekimoğlu, G., Köse Demirel, G., & Sarı, A. (2022). Properties of Scots pine wood impregnated with capric acid for potential energy saving building material. Holzforschung, 76(8), 744–753. https://doi.org/10.1515/hf-2022-0007
  • Omer, M. A., & Noguchi, T. (2020). A conceptual framework for understanding the contribution of building materials in the achievement of sustainable development goals (SDGs). Sustainable Cities and Society, 52, 101869. https://doi.org/10.1016/j.scs.2019.101869
  • Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., & Allwood, J. (2017). The wood from the trees: the use of timber in construction. Renew Sustain Energy Rev, 68, 333–359. https://doi.org/10.1016/j.rser.2016.09.107
  • Safira, L., Putra, N., Trisnadewi, T., Kusrini, E., & Mahlia, T. M. I. (2020). Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications. International Journal of Low-Carbon Technologies, 15(4), 629–636. https://doi.org/10.1093/ijlct/ctaa018
  • Sari, A., Hekimoğlu, G., & Tyagi, V. V. (2020). Low-cost and eco-friendly wood fiber-based composite phase change material: Development, characterization and lab-scale thermoregulation performance for thermal energy storage. Energy, 195, 116983. https://doi.org/10.1016/j.energy.2020.116983
  • Sari, A., Karaipekli, A., & Alkan, C. (2009). Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J, 155, 899–904. https://doi.org/10.1016/j.cej.2009.09.005
  • Sharma, A., Tyagi, V., Chen, C., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345. https://doi.org/10.1016/j.rser.2007.10.005
  • Tatsidjodoung, P., Le Pierrès, N., & Luo, L. (2013). A review of potential materials for thermal energy storage in building applications. Renewable and Sustainable Energy Reviews, 18, 327–349. https://doi.org/10.1016/j.rser.2012.10.025
  • Temiz, A., Hekimoğlu, G., Köse Demirel, G., & Sarı, A. (2020). Phase change material impregnated wood for passive thermal management of timber buildings. International Journal of Energy Research, 44, 10495–10505. https://doi.org/10.1002/er.5679
  • Toppinen, A., Röhr, A., Pätäri, S., Lähtinen, K., & Toivonen, R. (2018). The future of wooden multistory construction in the forest bioeconomy–a Delphi study from Finland and Sweden. Journal of Forest Economics, 31, 3–10. https://doi.org/10.1016/j.jfe.2017.05.001
  • Wen, B., Musa, S. N., Onn, C. C., Ramesh, S., Liang, L., Wang, W., & Ma, K. (2020). The role and contribution of green buildings on sustainable development goals. Building and Environment, 185, 107091. https://doi.org/10.1016/j.buildenv.2020.107091
  • Xie, N., Huang, Z., Luo, Z., Gao, X., Fang, Y., & Zhang, Z. (2017). Inorganic salt hydrate for thermal energy storage. Applied Sciences, 7(12), 12. https://doi.org/10.3390/app7121317
  • Yang, H., Wang, Y., Liu, Z., Liang, D., Liu, F., Zhang, W., Di, X., Wang, C., Ho, S. H., & Chen, W. H. (2017). Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage. Bioresource and Bioprocessing, 4, 1–12. https://doi.org/10.1186/s40643-017-0182-4
  • Yang, H., Wang, Y., Yu, Q., Cao, G., Yang, R., Ke, J., Di, X., Liu, F., Zhang, W., & Wang, C. (2018). Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Applied Energy, 212, 455–464. https://doi.org/10.1016/j.apenergy.2017.12.006
  • Yunus, W. M. M., Fen, Y. W., & Yee, L. M. (2009). Refractive index and Fourier transform infrared spectra of virgin coconut oil and virgin olive oil. American Journal of Applied Sciences, 6(2), 328. https://doi.org/10.3844/ajassp.2009.328.331
  • Zhu, Y., Wang, W., & Cao, J. (2014). Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid. BioResources, 9(2), 2431–2445. https://doi.org/10.15376/biores.9.2.2431-2445
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Research Articles
Yazarlar

Eda Zorlu Bu kişi benim 0009-0000-4042-1334

Ahmet Can 0000-0001-5926-6039

Proje Numarası 1919B012301579
Erken Görünüm Tarihi 21 Nisan 2025
Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 14 Ocak 2025
Kabul Tarihi 26 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 1

Kaynak Göster

APA Zorlu, E., & Can, A. (2025). Biyo-kökenli organik faz değişim malzemeleri ile emprenye edilen odun örneklerinin enerji depolama özelliklerinin incelenmesi. Bartın Orman Fakültesi Dergisi, 27(1), 118-126. https://doi.org/10.24011/barofd.1238857


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com