CMC Esaslı Hidrojel Üretimi için Fenton ile Oksitlenmiş ve Mekanik Rafinasyona Uğratılmış Selüloz ile Sürdürülebilir Takviyesi
Yıl 2025,
Cilt: 27 Sayı: 2, 331 - 346, 30.08.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Öz
Fenton oksidasyonu mikro ve nano ölçekli selüloz üretimi öncesinde sarf edilen enerji miktarını azaltmasıyla son yıllarda dikkat çeken konu başlıklarından biri olmuştur. Bu kimyasal ön işlem sayesinde lifler mekanik prosesler süresince daha kolay işlenirken, aynı zamanda liflerin yüzey alanlarının arttığı bulunmuştur. Bu çalışmada karboksimetil selüloz (KMS) esaslı hidrojel üretiminde katkı maddesi olarak kullanılan selülozun fenton oksidasyonu ile ön işleme tabi tutulmasının hidrojel özelliklerine olan etkileri araştırılmıştır. Selüloza ayrıca PFI veya kolloid değirmenleri ile mekanik ön işlemden de geçirilmiştir. FTIR, DSC ve SEM ile karakterize edilen hidrojellerin çeşitli sıvılar içerisindeki şişme performansları karşılaştırılmıştır. Ayrıca hidrojel üretiminde iki farklı tip sitrik asit (SA) ve epiklorohidrin (EKH) çapraz bağlayıcı kullanılmış, çapraz bağlayıcıların da hidrojel üzerindeki etkileri değerlendirilmiştir. Her iki çapraz bağlayıcı ile hidrojel üretimi başarı ile sonuçlanmış, çapraz bağlayıcı tipine göre FTIR spektrumlarında doğrulama yapılmıştır. Uygulanan fenton oksidasyonu sayesinde, hidrojelin şişme performansına kullanılan selülozdan kaynaklanan olumsuz etkiler sınırlandırılmıştır. Analizler sonucunda selüloz içermesine rağmen hidrojelin kendi kütlesinin 58 katına kadar sıvı absorplayabildiği belirlenmiştir.
Etik Beyan
Kontrol grubu örneklerinin verileri daha önce grubumuzun başka bir çalışmasında kullanılmıştır.
Büyüküstün, A. D., Erisir, E. ve Gümüşkaya, E. (2025). Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: the effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno. Prace naukowe. Doniesienia. Komunikaty, 68(215).
Bu çalışma, bilimsel araştırma ve yayın etiği ilkelerine uygun olarak yürütülmüştür.
Destekleyen Kurum
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Teşekkür
Yazarlar, bu çalışmayı 1001 Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı (Proje No: 215O313) aracılığıyla finanse eden Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na teşekkür eder.
Kaynakça
-
Abidi, N., Cabrales, L. ve Haigler, C. H. (2014). Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers, 100, 9-16. https://doi.org/10.1016/j.carbpol.2013.01.074
-
Ahmad, S., Sabir, A. ve Khan, S.M. (2023). Synthesis and characterization of pectin/carboxymethyl cellulose-based hybrid hydrogels for heavy metal ions adsorption. Chemical Papers, 77, 4165-4177. https://doi.org/10.1007/s11696-023-02767-7
-
Ämmälä, A., Sirviö, J.A. ve Liimatainen, H. (2022). Pine sawdust modification using Fenton oxidation for enhanced production of high-yield lignin-containing microfibrillated cellulose. Industrial Crops and Products. 186, 115196. https://doi.org/10.1016/j.indcrop.2022.115196
-
Barbucci R., Magnani A. ve Consumi M. (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20), 7475-7480. https://doi.org/10.1021/ma0007029
-
Büyüküstün, A. D., Erisir, E. ve Gümüşkaya, E. (2025). Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: the effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno. Prace naukowe. Doniesienia. Komunikaty, 68(215).
-
Chen, Y., Wang, Y., Wan, J. ve Ma, Y. (2010). Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 17(2), 329-338. https://doi.org/10.1007/s10570-009-9368-z
-
Duan, L., Liu, R. ve Li, Q. (2020). A More Efficient Fenton Oxidation Method with High Shear Mixing for the Preparation of Cellulose Nanofibers. Starch-starke, 72, 1900259. https://doi.org/10.1002/star.201900259
-
Fan M., Dai D. ve Huang B. (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier Transform - Materials Analysis. InTechOpen, Rijeka, 45-68. https://doi.org/10.5772/35482
-
Gao, B., Yang, J., Zhang, S. ve Li, X. (2021). Green fabrication of thermally-stable oxidized cellulose nanocrystals by evolved Fenton reaction and in-situ nanoreinforced thermoplastic starch. Cellulose, 28, 8405 - 8418. https://doi.org/10.1007/s10570-021-04039-7
-
Hellström, P., Heijnesson-Hultén, A., Paulsson, M., Håkansson, H. ve Germgard, U. (2014). The effect of Fenton chemistry on the properties of microfibrillated cellulose. Cellulose, 21, 1489-1503. https://doi.org/10.1007/s10570-014-0243-1
-
Klemm, D., Heublein, B., Fink, H.P. ve Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie, 44(22), 3358-93 . https://doi.org/10.1002/anie.200460587
-
Li, Q., Wang, A., Long, K., He, Z. ve Cha, R. (2018). Modified Fenton Oxidation of Cellulose Fibers for Cellulose Nanofibrils Preparation. ACS Sustainable Chemistry & Engineering. 7(1), 1129–1136. https://doi.org/10.1021/acssuschemeng.8b04786
-
Lin, Q., Chang, J., Gao, M. ve Ma, H. (2017). Synthesis of magnetic epichlorohydrin cross-linked carboxymethyl cellulose microspheres and their adsorption behavior for methylene blue. Journal of Environmental Science and Health, Part A, 52(2), 106-116. https://doi.org/10.1080/10934529.2016.1237117
-
Ma J., Xu Y., Fan B. ve Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5), 2221-2228. https://doi.org/10.1016/j.eurpolymj.2007.02.026
-
Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S. ve Ghorpade, V. S. (2018). Citric Acid Crosslinked Carboxymethyl Cellulose-based Composite Hydrogel Films for Drug Delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657-667. https://doi.org/10.4172/pharmaceutical-sciences.1000405
-
Milanovic J.Z., Kostić M.M. ve Škundrić P. (2012) Structure and properties of tempo-oxidized cotton fibers. Chemical Industry ve Chemical Engineering Quarterly, 18, 473-481. https://doi.org/10.2298/CICEQ120114024M
-
Pasqui D., De Cagna M. ve Barbucci R. (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers, 4(3), 1517-1534. https://doi.org/10.3390/polym4031517
-
Seki Y., Altinisik A., Demircioğlu B. ve Tetik C. (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3), 1689-1698. https://doi.org/10.1007/s10570-014-0204-8
-
Torlopov, M.A., Martakov, I.S., Mikhaylov, V.I., Golubev, Y.A., Sitnikov, P.A. ve Udoratina, E.V. (2019). A Fenton-like System (Cu(II)/H2O2) for the Preparation of Cellulose Nanocrystals with a Slightly Modified Surface. Industrial & Engineering Chemistry Research. 58 (44), 20282–20290. https://doi.org/10.1021/acs.iecr.9b03226
-
Tsague, F.L., Chimeni, D.Y., Assonfack, H.L., Abo, M.T., Cheumani, A.M., Ndinteh, D.T. ve Ndikontar, M.K. (2024). Study of oxidation of cellulose by Fenton-type reactions using alkali metal salts as swelling agents. Cellulose 31, 6643–6661. https://doi.org/10.1007/s10570-024-05970-1
-
Uyanga, K. A. ve Daoud, W. A. (2021). Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9), 5493-5512. https://doi.org/10.1007/s10570-021-03870-2
-
Velempini, T., Pillay, K., Mbianda, X.Y. ve Arotiba, O.A. (2017). Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(VI). International journal of biological macromolecules, 101, 837-844. https://doi.org/10.1016/j.ijbiomac.2017.03.048
-
Wen, J., Yin, Y., Peng, X. ve Zhang, S. (2019). Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content. Cellulose, 26, 2699-2713. https://doi.org/10.1007/s10570-018-2217-1
-
Xu, X., Lu, N., Wang, S., Huang, M., Qu, S. ve Xuan, F. (2021). Extraction and Characterization of Microfibrillated Cellulose from Discarded Cotton Fibers through Catalyst Preloaded Fenton Oxidation. Advances in Materials Science and Engineering, 5545409. https://doi.org/10.1155/2021/5545409
-
Yang, J., Tu, M., Xia, C., Keller, B., Huang, Y. ve Sun, F.F. (2019). Effect of Fenton Pretreatment on C1 and C6 Oxidation of Cellulose and its Enzymatic Hydrolyzability. ACS Sustainable Chemistry & Engineering, 7(7), 7071–7079. https://doi.org/10.1021/acssuschemeng.8b06850
Sustainable Reinforcement of CMC Based Hydrogels with Fenton Oxi-dized and Mechanically Refined Cellulose
Yıl 2025,
Cilt: 27 Sayı: 2, 331 - 346, 30.08.2025
Asena Damla Büyüküstün
,
Esat Gümüşkaya
,
Emir Erişir
Öz
Fenton oxidation has emerged as one of the most prominent topics in recent years due to its ability to reduce the amount of energy consumed in the production of micro- and nano-scale cellulose. This chemical pretreatment enables fibers to be processed more easily during mechanical processes while also increasing their surface area. In this study, the effects of pre-treating cellulose, used as an additive in the production of carboxymethyl cellulose (CMC)-based hydrogels, with Fenton oxidation on the properties of the hydrogels were investigated. The cellulose was also subjected to mechanical pre-treatment using PFI or colloid mills. The hydrogels characterized by FTIR, DSC, and SEM were compared the swelling performance in various liquids. Additionally, two different types of cross-linkers (citric acid and epichlorohydrin) were used in hydrogel production, and their effects on the hydrogels were evaluated. Hydrogel production was successfully achieved with both cross-linkers, and FTIR instrument was verified it. Thanks to the applied Fenton oxidation, the negative effects on the hydrogel's swelling performance caused by the cellulose were limited. The analyses revealed that the hydrogel could absorb liquid up to 58 times its own mass despite containing cellulose.
Kaynakça
-
Abidi, N., Cabrales, L. ve Haigler, C. H. (2014). Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers, 100, 9-16. https://doi.org/10.1016/j.carbpol.2013.01.074
-
Ahmad, S., Sabir, A. ve Khan, S.M. (2023). Synthesis and characterization of pectin/carboxymethyl cellulose-based hybrid hydrogels for heavy metal ions adsorption. Chemical Papers, 77, 4165-4177. https://doi.org/10.1007/s11696-023-02767-7
-
Ämmälä, A., Sirviö, J.A. ve Liimatainen, H. (2022). Pine sawdust modification using Fenton oxidation for enhanced production of high-yield lignin-containing microfibrillated cellulose. Industrial Crops and Products. 186, 115196. https://doi.org/10.1016/j.indcrop.2022.115196
-
Barbucci R., Magnani A. ve Consumi M. (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules, 33(20), 7475-7480. https://doi.org/10.1021/ma0007029
-
Büyüküstün, A. D., Erisir, E. ve Gümüşkaya, E. (2025). Swelling capacity in carboxymethylcellulose-cellulose hybrid hydrogels: the effects of oxidation with zinc chloride and refining on cellulose used as reinforcement. Drewno. Prace naukowe. Doniesienia. Komunikaty, 68(215).
-
Chen, Y., Wang, Y., Wan, J. ve Ma, Y. (2010). Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose, 17(2), 329-338. https://doi.org/10.1007/s10570-009-9368-z
-
Duan, L., Liu, R. ve Li, Q. (2020). A More Efficient Fenton Oxidation Method with High Shear Mixing for the Preparation of Cellulose Nanofibers. Starch-starke, 72, 1900259. https://doi.org/10.1002/star.201900259
-
Fan M., Dai D. ve Huang B. (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier Transform - Materials Analysis. InTechOpen, Rijeka, 45-68. https://doi.org/10.5772/35482
-
Gao, B., Yang, J., Zhang, S. ve Li, X. (2021). Green fabrication of thermally-stable oxidized cellulose nanocrystals by evolved Fenton reaction and in-situ nanoreinforced thermoplastic starch. Cellulose, 28, 8405 - 8418. https://doi.org/10.1007/s10570-021-04039-7
-
Hellström, P., Heijnesson-Hultén, A., Paulsson, M., Håkansson, H. ve Germgard, U. (2014). The effect of Fenton chemistry on the properties of microfibrillated cellulose. Cellulose, 21, 1489-1503. https://doi.org/10.1007/s10570-014-0243-1
-
Klemm, D., Heublein, B., Fink, H.P. ve Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie, 44(22), 3358-93 . https://doi.org/10.1002/anie.200460587
-
Li, Q., Wang, A., Long, K., He, Z. ve Cha, R. (2018). Modified Fenton Oxidation of Cellulose Fibers for Cellulose Nanofibrils Preparation. ACS Sustainable Chemistry & Engineering. 7(1), 1129–1136. https://doi.org/10.1021/acssuschemeng.8b04786
-
Lin, Q., Chang, J., Gao, M. ve Ma, H. (2017). Synthesis of magnetic epichlorohydrin cross-linked carboxymethyl cellulose microspheres and their adsorption behavior for methylene blue. Journal of Environmental Science and Health, Part A, 52(2), 106-116. https://doi.org/10.1080/10934529.2016.1237117
-
Ma J., Xu Y., Fan B. ve Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. European Polymer Journal, 43(5), 2221-2228. https://doi.org/10.1016/j.eurpolymj.2007.02.026
-
Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S. ve Ghorpade, V. S. (2018). Citric Acid Crosslinked Carboxymethyl Cellulose-based Composite Hydrogel Films for Drug Delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657-667. https://doi.org/10.4172/pharmaceutical-sciences.1000405
-
Milanovic J.Z., Kostić M.M. ve Škundrić P. (2012) Structure and properties of tempo-oxidized cotton fibers. Chemical Industry ve Chemical Engineering Quarterly, 18, 473-481. https://doi.org/10.2298/CICEQ120114024M
-
Pasqui D., De Cagna M. ve Barbucci R. (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers, 4(3), 1517-1534. https://doi.org/10.3390/polym4031517
-
Seki Y., Altinisik A., Demircioğlu B. ve Tetik C. (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose, 21(3), 1689-1698. https://doi.org/10.1007/s10570-014-0204-8
-
Torlopov, M.A., Martakov, I.S., Mikhaylov, V.I., Golubev, Y.A., Sitnikov, P.A. ve Udoratina, E.V. (2019). A Fenton-like System (Cu(II)/H2O2) for the Preparation of Cellulose Nanocrystals with a Slightly Modified Surface. Industrial & Engineering Chemistry Research. 58 (44), 20282–20290. https://doi.org/10.1021/acs.iecr.9b03226
-
Tsague, F.L., Chimeni, D.Y., Assonfack, H.L., Abo, M.T., Cheumani, A.M., Ndinteh, D.T. ve Ndikontar, M.K. (2024). Study of oxidation of cellulose by Fenton-type reactions using alkali metal salts as swelling agents. Cellulose 31, 6643–6661. https://doi.org/10.1007/s10570-024-05970-1
-
Uyanga, K. A. ve Daoud, W. A. (2021). Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose, 28(9), 5493-5512. https://doi.org/10.1007/s10570-021-03870-2
-
Velempini, T., Pillay, K., Mbianda, X.Y. ve Arotiba, O.A. (2017). Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(VI). International journal of biological macromolecules, 101, 837-844. https://doi.org/10.1016/j.ijbiomac.2017.03.048
-
Wen, J., Yin, Y., Peng, X. ve Zhang, S. (2019). Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content. Cellulose, 26, 2699-2713. https://doi.org/10.1007/s10570-018-2217-1
-
Xu, X., Lu, N., Wang, S., Huang, M., Qu, S. ve Xuan, F. (2021). Extraction and Characterization of Microfibrillated Cellulose from Discarded Cotton Fibers through Catalyst Preloaded Fenton Oxidation. Advances in Materials Science and Engineering, 5545409. https://doi.org/10.1155/2021/5545409
-
Yang, J., Tu, M., Xia, C., Keller, B., Huang, Y. ve Sun, F.F. (2019). Effect of Fenton Pretreatment on C1 and C6 Oxidation of Cellulose and its Enzymatic Hydrolyzability. ACS Sustainable Chemistry & Engineering, 7(7), 7071–7079. https://doi.org/10.1021/acssuschemeng.8b06850