Derleme
BibTex RIS Kaynak Göster

Developing Engineered Wood Products from Natural Fibers to Advance Sustainability in the Philippines

Yıl 2025, Cilt: 27 Sayı: 2, 364 - 375, 30.08.2025
https://doi.org/10.24011/barofd.1740781

Öz

Philippines, home to diverse natural resources and an agriculture-based economy, is increasingly pressured to practice sustainability in the construction and manufacturing sectors. This article investigated the production of engineered wood products from natural fibres and agricultural residues to enhance sustainability and resource optimization. It considers using native raw materials such as bamboo, abaca, coconut husks, banana stalks, rice straw, and peanut shells for new building materials, including more sustainable particleboard, fiberboard and engineered wood. These materials have satisfactory mechanical properties and provide eco-friendly solutions to replace wood and solve deforestation, agrowaste accumulation, and rural economic inequality. The findings focused on new processing methods, product performance, resin development, policy, industry collaboration, and research driving innovation. Although facing real challenges such as variability of quality, low scalability and lack of infrastructure, the Philippines is in a good position to become a regional leader in engineered wood products from sustainable sources. The authors also highlighted the perspectives for research, policy, and industry collaborations that will maximize the opportunities offered by such natural fibre reinforced composites to foster the development of a circular low carbon economy.

Kaynakça

  • Abera, Y. A. (2024). Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Composites and Advanced Materials, 33, 26349833241255957. https://doi.org/10.1177/26349833241255957
  • Acda, M. N. (2022). High-density fiberboard from wood and keratin fibers: Physical and mechanical properties. Current Materials Science: Formerly: Recent Patents on Materials Science, 15(2), 154-163. https://doi.org/10.2174/2666145414666210906152353
  • Acda, M. N., Rizare, M. D., & Cantalejo, A. P. G. (2025). Decay, Mold, and Termite Resistance of High-density Fiberboard from Wood and Chicken Feather Fibers. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.725-736
  • Aguilar, J. C. S., & Lawagon, C. P. (2022). Influence of Pressing Pressure on the Mechanical Properties of Durio zibethinus (Durian) Fiberboard. Journal of the Japan Institute of Energy, 101(12), 251-257.
  • Araya-Gutiérrez, D., Monge, G. G., Jiménez-Quesada, K., Arias-Aguilar, D., & Cordero, R. Q. (2023). Abaca: a general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional de Agronomía Medellín, 76(1), 10263-10273.
  • Arvizu-Montes, A., Alcivar-Bastidas, S., & Martínez-Echevarría, M. J. (2025). Experimental Study on the Effect of Abaca Fibers on Reinforced Concrete: Evaluation of Workability, Mechanical, and Durability-Related Properties. Fibers, 13(6), 75. https://doi.org/10.3390/fib13060075
  • Asyraf, M. R. M., Ng, L. F., Khoo, P. S., Yahya, M. Y., Hassan, S. A., Madenci, E., & Khan, T. (2024). Lignocellulosic abaca fibre-reinforced thermoplastic composites as future sustainable structural materials: a bibliometric analysis and literature review. Cellulose, 31(9), 5419-5459. https://doi.org/10.1007/s10570-024-05921-w
  • Balanay, R. M., Varela, R. P., & Halog, A. B. (2022). Circular economy for the sustainability of the wood-based industry: The case of Caraga Region, Philippines. Circular economy and sustainability, 447-462. https://doi.org/10.1016/B978-0-12-821664-4.00016-9
  • Bales, M., Yap, K. L., Baliña, F., & Casinillo, L. (2025). Interaction and problems in the abaca industry in Region VIII, Philippines.
  • Böger, T., Bianchi, S., Salzer, C., & Pichelin, F. (2018). Binderless boards made of milled coconut husk: an analysis of the technical feasibility and process restraints. International Wood Products Journal, 9(1), 3-8. https://doi.org/10.1080/20426445.2017.1400756
  • Cagadas, Z. R. B., Barcelona, K. F., Tadena, W. F., Ali, J. O., & Namoco Jr, C. S. (2023). Properties of particleboard made from waste pineapple leaves and recycled styrofoam. Sci. Int. (Lahore). https://hal.science/hal-04349548/
  • Castillo-Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa'saba'(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1).
  • Chen, Y., Zhang, K., Yu, L., Dai, F., Sha, G., & Tian, G. (2024). Variations in characteristics of bamboo vascular bundles between Dendrocalamus and Bambusa. Industrial Crops and Products, 219, 119140. https://doi.org/10.1016/j.indcrop.2024.119140
  • Department of Environment and Natural Resources- Forest Management Bureau (2024). Philippine Forestry Statistics.
  • Department of Science and Technology- Forest Products Research and Development Institute (2023). Local cross-laminated bamboo is a promising construction material. Accessed: May 20, 2025. https://fprdi.dost.gov.ph/
  • Department of Trade and Industry (DTI). (2025). Green Economic Development. Accessed: March 6, 2025. https://www.dti.gov.ph/
  • Eco-Friendly Tips PH (2025). Filipino innovator showcases sustainable coconut-based construction at 50th IEIG. Accessed (April 12, 2025). https://ecofriendlytip.com/filipino-inventor-earth-board-ieig-2025/
  • El-Kassas, A. M., & Elsheikh, A. H. (2021). A new eco-friendly mechanical technique for production of rice straw fibers for medium density fiberboards manufacturing. International Journal of Environmental Science and Technology, 18(4), 979-988. https://doi.org/10.1016/j.matdes.2013.03.057
  • Hao, S., Ding, J., Xie, H., Li, S., Wang, W., Song, Y., ... & Liu, T. (2025). A new application of rice straw in reinforcing phenolic foam with improved flexural, compression and face toward tensile properties. Construction and Building Materials, 459, 139723. https://doi.org/10.1016/j.conbuildmat.2024.139723
  • Figueroa, A. M. I., Pintor, L. L., Sapuay, G. P., Ancheta, A. A., Atienza, V. A., Hintural, W. P., ... & Ghosh, S. K. (2021). Circular Economy Strategies and Implementation in the Philippines. Circular Economy: Recent Trends in Global Perspective, 219-257. https://doi.org/10.1007/978-981-16-0913-8_7
  • Food and Agriculture Organization (2024). FAO Statistics.
  • Gardner, D. J., Han, Y., & Wang, L. (2015). Wood-plastic composite technology. Current Forestry Reports, 1, 139-150. https://doi.org/10.1007/s40725-015-0016-6
  • Greer, S. (2009). Converting coconut husks into binder less particle board (Doctoral dissertation).
  • Hosung, A. (2024). Wood Plastic Composite Philippines: Demand, Advantages and Development Potential. https://www.hosungdeck.com/wpc-industry-trends/wood-plastic-composite-philippines/
  • Islam, T., Chaion, M. H., Jalil, M. A., Rafi, A. S., Mushtari, F., Dhar, A. K., & Hossain, S. (2024). Advancements and challenges in natural fiber‐reinforced hybrid composites: a comprehensive review. SPE Polymers, 5(4), 481-506. https://doi.org/10.1002/pls2.10145
  • Jabu, M. A., Alugongo, A. A., & Nkomo, N. Z. A Review of the Potential Applications of Composites from Agricultural Waste. https://doi.org/10.14445/22315381/IJETT-V73I1P116
  • Jeyaguru, S., & Thiagamani, S. M. K. (2025). Evolution and recent advancement of composite materials in household applications. In Applications of Composite Materials in Engineering (pp. 303-315). Elsevier Science Ltd. https://doi.org/10.1016/B978-0-443-13989-5.00012-7
  • Kelkar, B. U., Shukla, S. R., Nagraik, P., & Paul, B. N. (2023). Structural bamboo composites: a review of processing, factors affecting properties and recent advances. Advances in Bamboo Science, 3, 100026. https://doi.org/10.1016/j.bamboo.2023.100026
  • Khan, A., Mishra, A., Thakur, V. K., & Pappu, A. (2025). Towards sustainable wood plastic composites: Polymer type, properties, processing and opportunities. RSC Sustainability. https://doi.org/10.1039/D5SU00153F
  • Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. Journal of Composites Science, 5(1), 28. https://doi.org/10.3390/jcs5010028
  • Kumar, P., Commissioner, A. P., Director, C. P. C. R. I., Chairman, T. V., Bhat, R., Director, D. C. C. D., ... & John, S. S. (2023). Coconut Development Board. Indian Coconut Journal. Volume 66-08. (pp. 1-40).
  • Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P., Paul, C., Palanisamy, S., ... & Kumar, P. (2023). A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose, 30(14), 8643-8664. https://doi.org/10.1007/s10570-023-05441-z
  • Lei, H., Zhou, X., Pizzi, A., Du, G., & Xi, X. (2025). Recent Developments in Bioadhesives and Binders. http://dx.doi.org/10.32604/jrm.2025.02024-0048
  • Li, H., Wang, Y., Xie, W., Tang, Y., Yang, F., Gong, C., ... & Li, C. (2023). Preparation and characterization of soybean protein adhesives modified with an environmental-friendly tannin-based resin. Polymers, 15(10), 2289. https://doi.org/10.3390/polym15102289
  • Limbaro, G. R. A., Tor, Ö., & Ateş, S. (2025). The industry of forest-based products in the Philippines. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(1), 154-165. https://doi.org/10.17474/artvinofd.1626078
  • Lokko, M. L. J. (2016). Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings. Rensselaer Polytechnic Institute.
  • Loreño, D. T., & Huang, Y. C. (2025). Strategies for Sustainable Development Leveraging MSMEs in the Philippine Blue and Green Economy: Innovation for Sustainability and Financial Empowerment for a Sustainable Transition. In Securing Sustainable Futures Through Blue and Green Economies (pp. 299-330). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7893-9.ch012
  • Luo, P., He, Y., & Wang, T. (2025). Production of Particleboards from Steam-pretreated Rice Straw and Castor Oil-based Polyurethane Resin. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.852-859
  • Maake, T., Asante, J. K., Mhike, W., & Mwakikunga, B. (2025). Fire-Retardant Wood Polymer Composite to Be Used as Building Materials for South African Formal and Informal Dwellings—A Review. Fire, 8(2), 81. https://doi.org/10.3390/fire8020081
  • Maharjan, K. L., Gonzalvo, C. M., & Baggo, J. C. (2025). Balancing Tradition and Innovation: The Role of Environmental Conservation Agriculture in the Sustainability of the Ifugao Rice Terraces. Agriculture, 15(3), 246. https://doi.org/10.3390/agriculture15030246
  • Macatangay P.M., Mangundayao E.C., & Rosales C.A.M. (2012). Utilization of agricultural wastes in the manufacture of composite boards. ASEAN Journal on Science and Technology for Development 29, (2)129.
  • Manjunathan, K., Nagarajan, P., Palanivel, K., Rudrakotti, A. R. B., Palanivel, A., & Megaraj, M. (2024, November). Characterization of medium-density hybrid fiberboards using saw-dust and coco peat with UF resin. In AIP Conference Proceedings (Vol. 3192, No. 1). AIP Publishing. https://doi.org/10.1063/5.0241701
  • Martinez, D. W. C. (2025). Optimized Compression Molding Machine for Biocomposite Production from Agricultural Waste. International Journal of Scientific Multidisciplinary Research, 3(2), 171-190. https://doi.org/10.55927/ijsmr.v3i2.48
  • Musinguzi, T. L., Yiga, V. A., & Lubwama, M. (2019). Production of bio-composite polymers with rice and coffee husks as reinforcing fillers using a low-cost compression molding machine. J Eng Agric Environ, 5(1), 61-72.
  • Montefrio, J., Galvan, C., Dionela, S., Guillermo, I., & Caipang, C. (2025). Turning losses into opportunities: waste valorization and its potential application in the production of Philippine commodities. Journal of Biological Studies, 8(1), 1-33. https://doi.org/10.62400/jbs.v8i1.13537
  • Morgan, L. (2024). Can bio-based building materials change the future of Brisbane’s development industry and encourage a transition toward a circular city? (Master's thesis). https://studenttheses.uu.nl/handle/20.500.12932/48179
  • Neitzel, N., Hosseinpourpia, R., Walther, T., & Adamopoulos, S. (2022). Alternative materials from agro-industry for wood panel manufacturing—A review. Materials, 15(13), 4542. https://doi.org/10.3390/ma15134542
  • Okeke, F., Ahmed, A., & Hassanin, H. (2024). Study on agricultural waste utilization in sustainable particleboard production. In E3S Web of Conferences (Vol. 563). EDP Sciences. https://doi.org/10.1051/e3sconf/202456302007
  • Oulanti, L., Bendarma, A., & Rabhi, L. (2025). Carbon fiber reinforced cellulose composites: a review. Discover Civil Engineering, 2(1), 105. https://doi.org/10.1007/s44290-025-00260-6
  • Palma-Torres, V. M., Cadalin, M. B., Evina, K. F. P., & Calderon, M. M. (2024). Opportunities and challenges towards a circular bioeconomy of the Philippines’ veneer and plywood industry. International Forestry Review, 26(3), 355-374. https://doi.org/10.1505/146554824839071634
  • Panneerselvam, T., Krishnakumar, B., & Raghuraman, S. (2025). Evaluation of mechanical properties and water absorption characteristics in chemically treated banana and abaca fiber-reinforced composites. In Surface Modification and Coating of Fibers, Polymers, and Composites (pp. 429-444). Elsevier. https://doi.org/10.1016/B978-0-443-22029-6.00021-6
  • Pelaez, M. C. D. (2019). Compressive Strength Properties of Rice Straw Composite Board using Cementitious Materials. Interdisciplinary Research Journal, 9, 15-30.
  • Perea-Moreno, A. J., & Muñoz-Rodríguez, D. (2025). Agro-industrial Wastes Valorisation to Energy and Value-Added Products for Environmental Sustainability. In Biomass Valorization: A Sustainable Approach towards Carbon Neutrality and Circular Economy (pp. 1-25). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8557-5_1
  • Philippine Fiber Industry Development Authority (2024). Abaca Technoguide 2024. PhilFIDA. Retrieved from : https://philfida.da.gov.ph/. Accessed on 07/06/2025.
  • Pioquinto-Laguardia, L., Lit Jr, I. L., & Lit, M. C. (2025). Growth Performance of Selected Bamboos in Secondary Forest and Riparian Ecosystems under Different Silvicultural Treatments. Jurnal Sylva Lestari, 13(2), 380-391. https://doi.org/10.23960/jsl.v13i2.1091
  • Pogosa, J., Asio, V., Bande, M., Bianchi, S., Grenz, J., & Pichelin, F. (2018). Productivity and sustainability of coconut production and husk utilization in the Philippines: coconut husk availability and utilization. International Journal of Environmental and Rural Development, 9(1), 31-36. https://doi.org/10.32115/ijerd.9.1_31
  • Raihan, A. (2023). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus, 9, 100180. https://doi.org/10.1016/j.nexus.2023.100180
  • Ramesh, M., Rajeshkumar, L., Sasikala, G., Balaji, D., Saravanakumar, A., Bhuvaneswari, V., & Bhoopathi, R. (2022). A critical review on wood-based polymer composites: Processing, properties, and prospects. Polymers, 14(3), 589. https://doi.org/10.3390/polym14030589
  • Ramirez-Peñafiel, F. C., de Guzman, R. E., Perez, A. S. K., & Binag, C. A. (2022). Polyaniline/agricultural waste microcellulose composites as electrode materials for supercapacitors. Acta Manilana, 70, 29-46. https://doi.org/10.53603/actamanil.70.2022.mgcy2771
  • Rao, K. M. C., Sheshagiri, M. B., Ramamoorthy, R. V., Amran, M., Nandanwar, A., Vijayakumar, P., ... & Guindos, P. (2025). Effect of Density on Acoustic and Thermal Properties of Low-Density Particle Boards Made from Agro-Residues: Towards Sustainable Material Solutions. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.601-624
  • Ribeiro, L. S., Stolz, C. M., Amario, M., Silva, A. L. N. D., & Haddad, A. N. (2023). Use of post-consumer plastics in the production of wood-plastic composites for building components: A Systematic Review. Energies, 16(18), 6549. https://doi.org/10.3390/en16186549
  • Ricciardi, P., Belloni, E., Merli, F., & Buratti, C. (2021). Sustainable panels made with industrial and agricultural waste: thermal and environmental critical analysis of the experimental results. Applied Sciences, 11(2), 494. https://doi.org/10.3390/app11020494
  • Sarma, H. H., & Paul, A. (2024). Turning Waste into Wealth: Exploring Strategies for Effective Agricultural Waste Management. Vigyan Varta, 5(5), 322-330.
  • Señeris, G. T., Garcia, F. M. N., Tapic, R. T., Mactal, A. G., Fiegalan, F. T., & Latonio, A. M. L. S. (2025). Morphological characterization and variability of leaves, peduncles, inflorescences and fruits in Abaca (Musa textilis Née) cultivars from Aklan, Philippines. HORIZON, 12(2), 1-24.
  • Señeris, G. T. (2024). Identifying key challenges in abaca (Musa textilis Née) production: a study in two Aklan Municipalities, Philippines. Universal Journal of Agricultural Research, 12(1), 24-34. https://doi.org/10.13189/ujar.2024.120103
  • Señeris, G. T., Vedasto, E. P., & Ragaas, M. L. (2022). Prevalence of Insect Pests, Beneficial Organisms and Diseases of Abaca (Musa textilis Nee) in Two Municipalities of Aklan, Philippines. Universal Journal of Agricultural Research, 10(3), 275-287. https://doi.org/10.13189/ujar.2022.100309
  • Shakir, M. H., & Singh, A. K. (2024). An investigation on the mechanical properties, surface treatments and applications of abaca fibre-reinforced composites. Advances in Materials and Processing Technologies, 10(4), 3491-3516. https://doi.org/10.1080/2374068X.2023.2247701
  • Thirunavukkarasu, A., Nithya, R., Sivashankar, R., & Sathya, A. B. (2018). Bio-based building materials for a green and sustainable environment. Bioprocess engineering for a green environment, 47-65. https://doi.org/10.1201/b22021
  • Tuazon, B. J., & Dizon, J. R. C. (2024). Additive Manufacturing Technology in the Furniture Industry: Future Outlook for Developing Countries. Advance Sustainable Science Engineering and Technology, 6(3), 02403024-02403024. https://doi.org/10.26877/asset.v6i3.908
  • Vieira, F., Santana, H. E., Jesus, M., Santos, J., Pires, P., Vaz-Velho, M., ... & Ruzene, D. S. (2024). Coconut waste: discovering sustainable approaches to advance a circular economy. Sustainability, 16(7), 3066. https://doi.org/10.3390/su16073066
  • Vitug, E. G., & Alvarez, S. C. (2024). Harnessing the Market Potential of the Bamboo Industry in Central Luzon, Philippines: An Analysis of the Internal and External Environment. Open Journal of Ecology, 14(5), 395-418. https://doi.org/10.4236/oje.2024.145024
  • Zanuttini, R., & Negro, F. (2021). Wood-based composites: Innovation towards a sustainable future. Forests, 12(12), 1717. https://doi.org/10.3390/f12121717
  • Zein, I., Rizal, S., Khalil, H. A., & Iqbal, M. (2025). Study of Abaca Fiber Orientations on Mechanical Properties. Materials Science Forum,1149, 39-46. https://doi.org/10.4028/p-Sf2Q0i

Filipinler’de Sürdürülebilirliğin Artırılmasına Yönelik Doğal Liflerden Üretilmiş Ahşap Ürünlerin Geliştirilmesi

Yıl 2025, Cilt: 27 Sayı: 2, 364 - 375, 30.08.2025
https://doi.org/10.24011/barofd.1740781

Öz

Filipinler, çeşitli doğal kaynaklara ve tarıma dayalı bir ekonomiye sahip bir ülke olarak, inşaat ve imalat sektörlerinde sürdürülebilir uygulamaları benimseme konusunda giderek artan bir baskı altındadır. Bu makalede, sürdürülebilirliği geliştirmek ve kaynakların etkin kullanımını sağlamak amacıyla tarımsal artık niteliğindeki doğal liflerden mühendislik ahşap ürünlerinin üretimi incelenmiştir. Bambu, abaka, hindistancevizi kabuğu, muz sapı, pirinç samanı ve yer fıstığı kabuğu gibi yerli hammaddelerin daha sürdürülebilir yonga levha, lif levha ve mühendislik ahşapları gibi yeni yapı malzemeleri üretiminde kullanımı ele alınmıştır. Bu malzemeler yalnızca tatmin edici mekanik özelliklere sahip olmakla kalmayıp, aynı zamanda orman tahribatı, tarımsal atık birikimi ve kırsal ekonomik eşitsizlik gibi sorunlara çözüm sunan çevre dostu alternatifler olarak öne çıkmaktadır. Çalışmada, yeni işleme yöntemleri, ürün performansı, reçine geliştirme süreci ile politika yapımı, sanayi iş birlikleri ve araştırma yoluyla yenilikçiliğin teşvik edilmesi gibi konulara odaklanılmıştır. Kalite değişkenliği, düşük ölçeklenebilirlik ve altyapı eksikliği gibi bazı gerçek zorluklarla karşı karşıya olmasına rağmen, Filipinler, sürdürülebilir kaynaklardan elde edilen mühendislik ahşap ürünleri alanında bölgesel bir lider olma potansiyeline sahiptir. Yazarlar ayrıca, doğal lif takviyeli bu kompozitlerin sunduğu fırsatların en üst düzeye çıkarılmasını sağlayacak araştırma, politika ve sanayi iş birliklerine yönelik perspektifleri vurgulamıştır. Bu yönüyle, döngüsel ve düşük karbonlu bir ekonominin geliştirilmesine katkı sağlanması amaçlanmaktadır.

Kaynakça

  • Abera, Y. A. (2024). Sustainable building materials: A comprehensive study on eco-friendly alternatives for construction. Composites and Advanced Materials, 33, 26349833241255957. https://doi.org/10.1177/26349833241255957
  • Acda, M. N. (2022). High-density fiberboard from wood and keratin fibers: Physical and mechanical properties. Current Materials Science: Formerly: Recent Patents on Materials Science, 15(2), 154-163. https://doi.org/10.2174/2666145414666210906152353
  • Acda, M. N., Rizare, M. D., & Cantalejo, A. P. G. (2025). Decay, Mold, and Termite Resistance of High-density Fiberboard from Wood and Chicken Feather Fibers. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.725-736
  • Aguilar, J. C. S., & Lawagon, C. P. (2022). Influence of Pressing Pressure on the Mechanical Properties of Durio zibethinus (Durian) Fiberboard. Journal of the Japan Institute of Energy, 101(12), 251-257.
  • Araya-Gutiérrez, D., Monge, G. G., Jiménez-Quesada, K., Arias-Aguilar, D., & Cordero, R. Q. (2023). Abaca: a general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional de Agronomía Medellín, 76(1), 10263-10273.
  • Arvizu-Montes, A., Alcivar-Bastidas, S., & Martínez-Echevarría, M. J. (2025). Experimental Study on the Effect of Abaca Fibers on Reinforced Concrete: Evaluation of Workability, Mechanical, and Durability-Related Properties. Fibers, 13(6), 75. https://doi.org/10.3390/fib13060075
  • Asyraf, M. R. M., Ng, L. F., Khoo, P. S., Yahya, M. Y., Hassan, S. A., Madenci, E., & Khan, T. (2024). Lignocellulosic abaca fibre-reinforced thermoplastic composites as future sustainable structural materials: a bibliometric analysis and literature review. Cellulose, 31(9), 5419-5459. https://doi.org/10.1007/s10570-024-05921-w
  • Balanay, R. M., Varela, R. P., & Halog, A. B. (2022). Circular economy for the sustainability of the wood-based industry: The case of Caraga Region, Philippines. Circular economy and sustainability, 447-462. https://doi.org/10.1016/B978-0-12-821664-4.00016-9
  • Bales, M., Yap, K. L., Baliña, F., & Casinillo, L. (2025). Interaction and problems in the abaca industry in Region VIII, Philippines.
  • Böger, T., Bianchi, S., Salzer, C., & Pichelin, F. (2018). Binderless boards made of milled coconut husk: an analysis of the technical feasibility and process restraints. International Wood Products Journal, 9(1), 3-8. https://doi.org/10.1080/20426445.2017.1400756
  • Cagadas, Z. R. B., Barcelona, K. F., Tadena, W. F., Ali, J. O., & Namoco Jr, C. S. (2023). Properties of particleboard made from waste pineapple leaves and recycled styrofoam. Sci. Int. (Lahore). https://hal.science/hal-04349548/
  • Castillo-Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa'saba'(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1).
  • Chen, Y., Zhang, K., Yu, L., Dai, F., Sha, G., & Tian, G. (2024). Variations in characteristics of bamboo vascular bundles between Dendrocalamus and Bambusa. Industrial Crops and Products, 219, 119140. https://doi.org/10.1016/j.indcrop.2024.119140
  • Department of Environment and Natural Resources- Forest Management Bureau (2024). Philippine Forestry Statistics.
  • Department of Science and Technology- Forest Products Research and Development Institute (2023). Local cross-laminated bamboo is a promising construction material. Accessed: May 20, 2025. https://fprdi.dost.gov.ph/
  • Department of Trade and Industry (DTI). (2025). Green Economic Development. Accessed: March 6, 2025. https://www.dti.gov.ph/
  • Eco-Friendly Tips PH (2025). Filipino innovator showcases sustainable coconut-based construction at 50th IEIG. Accessed (April 12, 2025). https://ecofriendlytip.com/filipino-inventor-earth-board-ieig-2025/
  • El-Kassas, A. M., & Elsheikh, A. H. (2021). A new eco-friendly mechanical technique for production of rice straw fibers for medium density fiberboards manufacturing. International Journal of Environmental Science and Technology, 18(4), 979-988. https://doi.org/10.1016/j.matdes.2013.03.057
  • Hao, S., Ding, J., Xie, H., Li, S., Wang, W., Song, Y., ... & Liu, T. (2025). A new application of rice straw in reinforcing phenolic foam with improved flexural, compression and face toward tensile properties. Construction and Building Materials, 459, 139723. https://doi.org/10.1016/j.conbuildmat.2024.139723
  • Figueroa, A. M. I., Pintor, L. L., Sapuay, G. P., Ancheta, A. A., Atienza, V. A., Hintural, W. P., ... & Ghosh, S. K. (2021). Circular Economy Strategies and Implementation in the Philippines. Circular Economy: Recent Trends in Global Perspective, 219-257. https://doi.org/10.1007/978-981-16-0913-8_7
  • Food and Agriculture Organization (2024). FAO Statistics.
  • Gardner, D. J., Han, Y., & Wang, L. (2015). Wood-plastic composite technology. Current Forestry Reports, 1, 139-150. https://doi.org/10.1007/s40725-015-0016-6
  • Greer, S. (2009). Converting coconut husks into binder less particle board (Doctoral dissertation).
  • Hosung, A. (2024). Wood Plastic Composite Philippines: Demand, Advantages and Development Potential. https://www.hosungdeck.com/wpc-industry-trends/wood-plastic-composite-philippines/
  • Islam, T., Chaion, M. H., Jalil, M. A., Rafi, A. S., Mushtari, F., Dhar, A. K., & Hossain, S. (2024). Advancements and challenges in natural fiber‐reinforced hybrid composites: a comprehensive review. SPE Polymers, 5(4), 481-506. https://doi.org/10.1002/pls2.10145
  • Jabu, M. A., Alugongo, A. A., & Nkomo, N. Z. A Review of the Potential Applications of Composites from Agricultural Waste. https://doi.org/10.14445/22315381/IJETT-V73I1P116
  • Jeyaguru, S., & Thiagamani, S. M. K. (2025). Evolution and recent advancement of composite materials in household applications. In Applications of Composite Materials in Engineering (pp. 303-315). Elsevier Science Ltd. https://doi.org/10.1016/B978-0-443-13989-5.00012-7
  • Kelkar, B. U., Shukla, S. R., Nagraik, P., & Paul, B. N. (2023). Structural bamboo composites: a review of processing, factors affecting properties and recent advances. Advances in Bamboo Science, 3, 100026. https://doi.org/10.1016/j.bamboo.2023.100026
  • Khan, A., Mishra, A., Thakur, V. K., & Pappu, A. (2025). Towards sustainable wood plastic composites: Polymer type, properties, processing and opportunities. RSC Sustainability. https://doi.org/10.1039/D5SU00153F
  • Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. Journal of Composites Science, 5(1), 28. https://doi.org/10.3390/jcs5010028
  • Kumar, P., Commissioner, A. P., Director, C. P. C. R. I., Chairman, T. V., Bhat, R., Director, D. C. C. D., ... & John, S. S. (2023). Coconut Development Board. Indian Coconut Journal. Volume 66-08. (pp. 1-40).
  • Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P., Paul, C., Palanisamy, S., ... & Kumar, P. (2023). A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose, 30(14), 8643-8664. https://doi.org/10.1007/s10570-023-05441-z
  • Lei, H., Zhou, X., Pizzi, A., Du, G., & Xi, X. (2025). Recent Developments in Bioadhesives and Binders. http://dx.doi.org/10.32604/jrm.2025.02024-0048
  • Li, H., Wang, Y., Xie, W., Tang, Y., Yang, F., Gong, C., ... & Li, C. (2023). Preparation and characterization of soybean protein adhesives modified with an environmental-friendly tannin-based resin. Polymers, 15(10), 2289. https://doi.org/10.3390/polym15102289
  • Limbaro, G. R. A., Tor, Ö., & Ateş, S. (2025). The industry of forest-based products in the Philippines. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 26(1), 154-165. https://doi.org/10.17474/artvinofd.1626078
  • Lokko, M. L. J. (2016). Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings. Rensselaer Polytechnic Institute.
  • Loreño, D. T., & Huang, Y. C. (2025). Strategies for Sustainable Development Leveraging MSMEs in the Philippine Blue and Green Economy: Innovation for Sustainability and Financial Empowerment for a Sustainable Transition. In Securing Sustainable Futures Through Blue and Green Economies (pp. 299-330). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7893-9.ch012
  • Luo, P., He, Y., & Wang, T. (2025). Production of Particleboards from Steam-pretreated Rice Straw and Castor Oil-based Polyurethane Resin. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.852-859
  • Maake, T., Asante, J. K., Mhike, W., & Mwakikunga, B. (2025). Fire-Retardant Wood Polymer Composite to Be Used as Building Materials for South African Formal and Informal Dwellings—A Review. Fire, 8(2), 81. https://doi.org/10.3390/fire8020081
  • Maharjan, K. L., Gonzalvo, C. M., & Baggo, J. C. (2025). Balancing Tradition and Innovation: The Role of Environmental Conservation Agriculture in the Sustainability of the Ifugao Rice Terraces. Agriculture, 15(3), 246. https://doi.org/10.3390/agriculture15030246
  • Macatangay P.M., Mangundayao E.C., & Rosales C.A.M. (2012). Utilization of agricultural wastes in the manufacture of composite boards. ASEAN Journal on Science and Technology for Development 29, (2)129.
  • Manjunathan, K., Nagarajan, P., Palanivel, K., Rudrakotti, A. R. B., Palanivel, A., & Megaraj, M. (2024, November). Characterization of medium-density hybrid fiberboards using saw-dust and coco peat with UF resin. In AIP Conference Proceedings (Vol. 3192, No. 1). AIP Publishing. https://doi.org/10.1063/5.0241701
  • Martinez, D. W. C. (2025). Optimized Compression Molding Machine for Biocomposite Production from Agricultural Waste. International Journal of Scientific Multidisciplinary Research, 3(2), 171-190. https://doi.org/10.55927/ijsmr.v3i2.48
  • Musinguzi, T. L., Yiga, V. A., & Lubwama, M. (2019). Production of bio-composite polymers with rice and coffee husks as reinforcing fillers using a low-cost compression molding machine. J Eng Agric Environ, 5(1), 61-72.
  • Montefrio, J., Galvan, C., Dionela, S., Guillermo, I., & Caipang, C. (2025). Turning losses into opportunities: waste valorization and its potential application in the production of Philippine commodities. Journal of Biological Studies, 8(1), 1-33. https://doi.org/10.62400/jbs.v8i1.13537
  • Morgan, L. (2024). Can bio-based building materials change the future of Brisbane’s development industry and encourage a transition toward a circular city? (Master's thesis). https://studenttheses.uu.nl/handle/20.500.12932/48179
  • Neitzel, N., Hosseinpourpia, R., Walther, T., & Adamopoulos, S. (2022). Alternative materials from agro-industry for wood panel manufacturing—A review. Materials, 15(13), 4542. https://doi.org/10.3390/ma15134542
  • Okeke, F., Ahmed, A., & Hassanin, H. (2024). Study on agricultural waste utilization in sustainable particleboard production. In E3S Web of Conferences (Vol. 563). EDP Sciences. https://doi.org/10.1051/e3sconf/202456302007
  • Oulanti, L., Bendarma, A., & Rabhi, L. (2025). Carbon fiber reinforced cellulose composites: a review. Discover Civil Engineering, 2(1), 105. https://doi.org/10.1007/s44290-025-00260-6
  • Palma-Torres, V. M., Cadalin, M. B., Evina, K. F. P., & Calderon, M. M. (2024). Opportunities and challenges towards a circular bioeconomy of the Philippines’ veneer and plywood industry. International Forestry Review, 26(3), 355-374. https://doi.org/10.1505/146554824839071634
  • Panneerselvam, T., Krishnakumar, B., & Raghuraman, S. (2025). Evaluation of mechanical properties and water absorption characteristics in chemically treated banana and abaca fiber-reinforced composites. In Surface Modification and Coating of Fibers, Polymers, and Composites (pp. 429-444). Elsevier. https://doi.org/10.1016/B978-0-443-22029-6.00021-6
  • Pelaez, M. C. D. (2019). Compressive Strength Properties of Rice Straw Composite Board using Cementitious Materials. Interdisciplinary Research Journal, 9, 15-30.
  • Perea-Moreno, A. J., & Muñoz-Rodríguez, D. (2025). Agro-industrial Wastes Valorisation to Energy and Value-Added Products for Environmental Sustainability. In Biomass Valorization: A Sustainable Approach towards Carbon Neutrality and Circular Economy (pp. 1-25). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8557-5_1
  • Philippine Fiber Industry Development Authority (2024). Abaca Technoguide 2024. PhilFIDA. Retrieved from : https://philfida.da.gov.ph/. Accessed on 07/06/2025.
  • Pioquinto-Laguardia, L., Lit Jr, I. L., & Lit, M. C. (2025). Growth Performance of Selected Bamboos in Secondary Forest and Riparian Ecosystems under Different Silvicultural Treatments. Jurnal Sylva Lestari, 13(2), 380-391. https://doi.org/10.23960/jsl.v13i2.1091
  • Pogosa, J., Asio, V., Bande, M., Bianchi, S., Grenz, J., & Pichelin, F. (2018). Productivity and sustainability of coconut production and husk utilization in the Philippines: coconut husk availability and utilization. International Journal of Environmental and Rural Development, 9(1), 31-36. https://doi.org/10.32115/ijerd.9.1_31
  • Raihan, A. (2023). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus, 9, 100180. https://doi.org/10.1016/j.nexus.2023.100180
  • Ramesh, M., Rajeshkumar, L., Sasikala, G., Balaji, D., Saravanakumar, A., Bhuvaneswari, V., & Bhoopathi, R. (2022). A critical review on wood-based polymer composites: Processing, properties, and prospects. Polymers, 14(3), 589. https://doi.org/10.3390/polym14030589
  • Ramirez-Peñafiel, F. C., de Guzman, R. E., Perez, A. S. K., & Binag, C. A. (2022). Polyaniline/agricultural waste microcellulose composites as electrode materials for supercapacitors. Acta Manilana, 70, 29-46. https://doi.org/10.53603/actamanil.70.2022.mgcy2771
  • Rao, K. M. C., Sheshagiri, M. B., Ramamoorthy, R. V., Amran, M., Nandanwar, A., Vijayakumar, P., ... & Guindos, P. (2025). Effect of Density on Acoustic and Thermal Properties of Low-Density Particle Boards Made from Agro-Residues: Towards Sustainable Material Solutions. BioResources, 20(1). https://doi.org/10.15376/biores.20.1.601-624
  • Ribeiro, L. S., Stolz, C. M., Amario, M., Silva, A. L. N. D., & Haddad, A. N. (2023). Use of post-consumer plastics in the production of wood-plastic composites for building components: A Systematic Review. Energies, 16(18), 6549. https://doi.org/10.3390/en16186549
  • Ricciardi, P., Belloni, E., Merli, F., & Buratti, C. (2021). Sustainable panels made with industrial and agricultural waste: thermal and environmental critical analysis of the experimental results. Applied Sciences, 11(2), 494. https://doi.org/10.3390/app11020494
  • Sarma, H. H., & Paul, A. (2024). Turning Waste into Wealth: Exploring Strategies for Effective Agricultural Waste Management. Vigyan Varta, 5(5), 322-330.
  • Señeris, G. T., Garcia, F. M. N., Tapic, R. T., Mactal, A. G., Fiegalan, F. T., & Latonio, A. M. L. S. (2025). Morphological characterization and variability of leaves, peduncles, inflorescences and fruits in Abaca (Musa textilis Née) cultivars from Aklan, Philippines. HORIZON, 12(2), 1-24.
  • Señeris, G. T. (2024). Identifying key challenges in abaca (Musa textilis Née) production: a study in two Aklan Municipalities, Philippines. Universal Journal of Agricultural Research, 12(1), 24-34. https://doi.org/10.13189/ujar.2024.120103
  • Señeris, G. T., Vedasto, E. P., & Ragaas, M. L. (2022). Prevalence of Insect Pests, Beneficial Organisms and Diseases of Abaca (Musa textilis Nee) in Two Municipalities of Aklan, Philippines. Universal Journal of Agricultural Research, 10(3), 275-287. https://doi.org/10.13189/ujar.2022.100309
  • Shakir, M. H., & Singh, A. K. (2024). An investigation on the mechanical properties, surface treatments and applications of abaca fibre-reinforced composites. Advances in Materials and Processing Technologies, 10(4), 3491-3516. https://doi.org/10.1080/2374068X.2023.2247701
  • Thirunavukkarasu, A., Nithya, R., Sivashankar, R., & Sathya, A. B. (2018). Bio-based building materials for a green and sustainable environment. Bioprocess engineering for a green environment, 47-65. https://doi.org/10.1201/b22021
  • Tuazon, B. J., & Dizon, J. R. C. (2024). Additive Manufacturing Technology in the Furniture Industry: Future Outlook for Developing Countries. Advance Sustainable Science Engineering and Technology, 6(3), 02403024-02403024. https://doi.org/10.26877/asset.v6i3.908
  • Vieira, F., Santana, H. E., Jesus, M., Santos, J., Pires, P., Vaz-Velho, M., ... & Ruzene, D. S. (2024). Coconut waste: discovering sustainable approaches to advance a circular economy. Sustainability, 16(7), 3066. https://doi.org/10.3390/su16073066
  • Vitug, E. G., & Alvarez, S. C. (2024). Harnessing the Market Potential of the Bamboo Industry in Central Luzon, Philippines: An Analysis of the Internal and External Environment. Open Journal of Ecology, 14(5), 395-418. https://doi.org/10.4236/oje.2024.145024
  • Zanuttini, R., & Negro, F. (2021). Wood-based composites: Innovation towards a sustainable future. Forests, 12(12), 1717. https://doi.org/10.3390/f12121717
  • Zein, I., Rizal, S., Khalil, H. A., & Iqbal, M. (2025). Study of Abaca Fiber Orientations on Mechanical Properties. Materials Science Forum,1149, 39-46. https://doi.org/10.4028/p-Sf2Q0i
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Esaslı Kompozitler
Bölüm Review Articles and Editorials
Yazarlar

Gindol Rey Ayala Limbaro 0000-0002-5187-7465

Önder Tor 0000-0002-9405-1081

Erken Görünüm Tarihi 22 Ağustos 2025
Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 12 Temmuz 2025
Kabul Tarihi 4 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 2

Kaynak Göster

APA Limbaro, G. R. A., & Tor, Ö. (2025). Developing Engineered Wood Products from Natural Fibers to Advance Sustainability in the Philippines. Bartın Orman Fakültesi Dergisi, 27(2), 364-375. https://doi.org/10.24011/barofd.1740781


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com