Antiviral Etkili Fitoterapötikler: Tıbbi Bitkiler ve Fitokimyasallar
Yıl 2020,
Cilt: 1 Sayı: 2, 2 - 20, 09.05.2020
Miray Ege
,
Mahfuz Elmastaş
Öz
Viral enfeksiyonlar her yıl milyonlarca kişiyi etkiler ve genel olarak ağır seyreden enfeksiyonlara ve hatta ölümlere sebep olurlar. Yaygın olarak kullanılan antiviral ilaçların genellikle etkinlikleri sınırlıdır ve ciddi yan etkilere sebep olabilirler. Bu nedenle etkili yeni antiviral stratejilere halen çok ihtiyaç duyulmaktadır.
Tıbbi bitkiler eski zamanlardan beri terapötik amaçlar için kullanılmaktadır. Antiviral özellikleri ile doğal bazlı fitoterapi viral hastalıkların tedavisi için uygun bir seçenek olabilir. Genel olarak viral replikasyonun inhibisyonu çoğu zaman doğal ürünlerin antiviral aktivitesi için genel bir mekanizma olarak düşünülse de çalışmalar bazı doğal ürünlerin virülans ile ilişkili anahtar viral proteinlerle etkileşime girebileceğini göstermiştir. Bu anlamda, bazı doğal kaynaklı bileşiklerin kendileri veya bir ana şablon olarak kullanılarak sentezlenen türevleri, daha etkili yeni antiviral ilaç tasarımlarının geliştirilmesine ışık tutabilir. Ayrıca antiviral aktiviteye sahip çok sayıda doğal ürün, bazı epidemilerde genel popülasyonun bağışıklığını arttırmak için kullanılabilecek gıda takviyelerinin de ana bileşenleridir. Antiviral tedavinin zorlukları ve olasılıkları göz önüne alındığında bu çalışma; tıbbi bitkiler ve antiviral aktiviteye sahip olan fitokimyasallar hakkında kanıta dayalı verileri derlemeyi amaçlamaktadır.
Destekleyen Kurum
Bulunmamaktadır.
Kaynakça
- Antonelli, G., & Pistello, M. (2019). Virology: A Scientific Discipline Facing New Challenges. Clinical Microbiology and Infection, 25(2), 133-135. https://doi.org/10.1016/j.cmi.2018.12.003
- Armanini, D., Fiore, C., Mattarello, M.J., Bielenberg, J., & Palermo, M. (2002). History of the Endocrine Effects of Licorice. Experimental and Clinical Endocrinology and Diabetes, 110(6), 257-261. https://doi.org/10.1055/s-2002-34587
- Bachmetov, L., Gal-Tanamy, M., Shapira, A., Vorobeychik, M., Giterman-Galam, T., Sathiyamoorthy, P., … Zemel, R. (2012). Suppression of Hepatitis C Virus by the Flavonoid Quercetin Is Mediated by Inhibition of NS3 Protease Activity. Journal of Viral Hepatitis, 19(2), e81-88. https://doi.org/10.1111/j.1365-2893.2011.01507.x
- Ben-Shabat, S., Yarmolinsky, L., Porat, D., & Dahan, A. (2020). Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research, 10(2), 354-367. https:// doi: 10.1007/s13346-019-00691-6.
Blumenthal M, Goldberg A, Brinckmann J, Foster S. 2000. Herbal Medicine. Expanded Commission E Monographs, American Botanical Council: Austin TX, 233–239.
- Chang, J.S., Wang, K.C., Yeh, C.F., Shieh, D.E., & Chiang, L.C. (2013). Fresh Ginger (Zingiber Officinale) Has Anti-Viral Activity against Human Respiratory Syncytial Virus in Human Respiratory Tract Cell Lines. Journal of Ethnopharmacology, 145(1), 146-151.
https://doi.org/10.1016/j.jep.2012.10.043
- Chen, C.N., Lin, C.P., Huang, K.K., Chen, W.C., Hsieh, H.P., Liang, P.H., & Hsu, J.T. (2005). Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3′- Digallate (TF3). Evidence-Based Complementary and Alternative Medicine, 2(2), 209-215.
https://doi.org/10.1093/ecam/neh081
- Cheng, P.W., Ng, L.T., Chiang, L.C., & Lin, C.C. (2006). Antiviral Effects of Saikosaponins on Human Coronavirus 229E in Vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616. https://doi.org/10.1111/j.1440-1681.2006.04415.x
- Chiang, L.C., Chiang, W., Liu, M.C., & Lin, C.C. (2003). In Vitro Antiviral Activities of Caesalpinia Pulcherrima and Its Related Flavonoids. Journal of Antimicrobial Chemotherapy, 52(2), 194-198. https://doi.org/10.1093/jac/dkg291
- Chiow, K.H., Phoon, M.C., Putti, T., Tan, B.K., & Chow, V.T. (2016). Evaluation of Antiviral Activities of Houttuynia Cordata Thunb. Extract, Quercetin, Quercetrin and Cinanserin on Murine Coronavirus and Dengue Virus Infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1-7. https://doi.org/10.1016/j.apjtm.2015.12.002
- Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H.W. (2003). Glycyrrhizin, an Active Component of Liquorice Roots, and Replication of SARS-Associated Coronavirus. Lancet, 361(9374), 2045-2046. https://doi.org/10.1016/S0140-6736(03)13615-X
- Dai, W., Bi, J., Li, F., Wang, S., Huang, X., Meng, X., … Su, W. (2019). Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses, 11(7), pii: E625. https://doi.org/10.3390/v11070625
- dos Santos, A.E., Kuster, R.M., Yamamoto, K.A., Salles, T.S., Campos, R., de Meneses, M.D., … Ferreira, D. (2014). Quercetin and Quercetin 3-O-Glycosides from Bauhinia Longifolia (Bong.) Steud. Show Anti-Mayaro Virus Activity. Parasites and Vectors, 7, 130.
https://doi.org/10.1186/1756-3305-7-130
- Droebner, K., Ehrhardt, C., Poetter, A., Ludwig, S., & Planz, O. (2007). CYSTUS052, a Polyphenol-Rich Plant Extract, Exerts Anti-Influenza Virus Activity in Mice. Antiviral Research, 76(1), 1-10. https://doi.org/10.1016/j.antiviral.2007.04.001
- Ehrhardt, C., Hrincius, E.R., Korte, V., Mazur, I., Droebner, K., Poetter, A. … Ludwig, S. (2007). A Polyphenol Rich Plant Extract, CYSTUS052, Exerts Anti Influenza Virus Activity in Cell Culture without Toxic Side Effects or the Tendency to Induce Viral Resistance. Antiviral Research, 76(1), 38-47. https://doi.org/10.1016/j.antiviral.2007.05.002
- Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008). Antiviral Effects of Glycyrrhiza Species. Phytotherapy Research, 22(2), 141-148. https://doi.org/10.1002/ptr.2295
- Fiore, C., Eisenhut, M., Ragazzi, E., Zanchin, G., & Armanini, D. (2005). A History of the Therapeutic Use of Liquorice in Europe. Journal of Ethnopharmacology, 99(3), 317-324. https://doi.org/10.1016/j.jep.2005.04.015
- Fredrickson, WR, F and S Group, Inc. Method and Composition for Antiviral Therapy with Olive Leaves. U.S. Patent. 2000; 6: 117:884.
- Ganesan, S., Faris, A.N., Comstock, A.T., Wang, Q., Nanua, S., Hershenson, M.B., & Sajjan, U.S. (2012). Quercetin Inhibits Rhinovirus Replication in Vitro and in Vivo. Antiviral Research, 94(3), 258-271. https://doi.org/10.1016/j.antiviral.2012.03.005
- Glatthaar-Saalmüller, B., Rauchhaus, U., Rode, S., Haunschild, J., & Saalmüller, A. (2011). Antiviral Activity in Vitro of Two Preparations of the Herbal Medicinal Product Sinupret® against Viruses Causing Respiratory Infections. Phytomedicine, 19(1), 1-7. https://doi.org/10.1016/j.phymed.2011.10.010
- Gonzalez, O., Fontanes, V., Raychaudhuri, S., Loo, R., Loo, J., Arumugaswami, V., … French, S.W. (2009). The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production. Hepatology, 50(6), 1756-1764. https://doi.org/10.1002/hep.23232
- Ho, G.T., Ahmed, A., Zou, Y.F., Aslaksen, T., Wangensteen, H., & Barsett, H. (2015). Structure-Activity Relationship of Immunomodulating Pectins from Elderberries. Carbohydrate Polymers, 125, 314-322. https://doi.org/10.1016/j.carbpol.2015.02.057
- Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G.A., … Cinatl, J.Jr. (2005). Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS-Coronavirus. Journal of Medicinal Chemistry, 48(4), 1256-1259. https://doi.org/10.1021/jm0493008
- Ibrahim, A.K., Youssef, A.I., Arafa, A.S., & Ahmed, S.A. (2013). Anti-H5N1 Virus Flavonoids from Capparis Sinaica Veill. Natural Product Research, 27(22), 2149-2153. https://doi.org/10.1080/14786419.2013.790027
- Islam, M.T., Sarkar, C., El-Kersh, D.M., Jamaddar, S., Uddin, S.J., Shilpi, J.A., & Mubarak, M.S. (2020). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, https://doi: 10.1002/ptr.6700 [Epub ahead of print]
- Ito, T., Suzuki, Y., Mitnaul, L., Vines, A., Kida, H., & Kawaoka, Y. (1997). Receptor Specificity of Influenza A Viruses Correlates with the Agglutination of Erythrocytes from Different Animal Species. Virology, 227(2), 493-499. https://doi.org/10.1006/viro.1996.8323
- Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., & Obata, A. (2012). Anti-Influenza Virus Effects of Elderberry Juice and Its Fractions. Bioscience, Biotechnology and Biochemistry, 76(9), 1633-1638. https://doi.org/10.1271/bbb.120112
- Lee, M., Son, M., Ryu, E., Shin, Y.S., Kim, J.G., Kang, B.W., … Kang, H. (2015). Quercetin-Induced Apoptosis Prevents EBV Infection. Oncotarget, 6(14), 12603-12624. https://doi.org/10.18632/oncotarget.3687
- Li, Y.L., Li, K.M., Su, M.X., Leung, K.T., Chen, Y.W., & Zhang, Y.W. (2006). Studies on Antiviral Constituents in Stems and Leaves of Pithecellibium Clypearia. Zhongguo Zhongyao Zazhi, 31(5), 397-400.
- Lin, C.W., Tsai, F.J., Tsai, C.H., Lai, C.C., Wan, L., Ho, T.Y., … Chao, P.D. (2005). Anti-SARS Coronavirus 3C-like Protease Effects of Isatis Indigotica Root and Plant-Derived Phenolic Compounds. Antiviral Research, 68(1), 36-42. https://doi.org/10.1016/j.antiviral.2005.07.002
- Ma, S.C., He, Z.D., Deng, X.L., But, P.P., Ooi, V.E., Xu, H.X., … Lee, S.F. (2001). In Vitro Evaluation of Secoiridoid Glucosides from the Fruits of Ligustrum Lucidum as Antiviral Agents. Chemical and Pharmaceutical Bulletin, 49(11), 1471-1473. https://doi.org/10.1248/cpb.49.1471
- Mandenius, C.F., Wang, R., Aldén, A., Bergström, G., Thébault, S., Lutsch, C., & Ohlson, S. (2008). Monitoring of Influenza Virus Hemagglutinin in Process Samples Using Weak Affinity Ligands and Surface Plasmon Resonance. Analytica Chimica Acta, 623(1), 66-75. https://doi.org/10.1016/j.aca.2008.06.005
- Morag, A.M., Mumcuoglu, M., Baybikov, T., Schlesinger, M., & Zakay-Rones, Z. (1997). Inhibition of sensitive and acyclovirresistant HSF-1 strains by an elderberry extract in vitro. Xth International Congress of Virology Jerusalem, Israel; 11– 16 August 1996. Phytoparasitica 25: 1.
- Neznanov, N., Kondratova, A., Chumakov, K.M., Neznanova, L., Kondratov, R., Banerjee, A.K., & Gudkov, A.V. (2008). Quercetinase Pirin Makes Poliovirus Replication Resistant to Flavonoid Quercetin. DNA and Cell Biology, 27(4), 191-198. https://doi.org/10.1089/dna.2007.0682
- Nováková, L., Pavlík, J., Chrenková, L., Martinec, O., & Červený, L. (2018). Current Antiviral Drugs and Their Analysis in Biological Materials – Part II: Antivirals against Hepatitis and HIV Viruses. Journal of Pharmaceutical and Biomedical Analysis, 147, 378-399. https://doi.org/10.1016/j.jpba.2017.07.003
- Orhan, D.D., Ozçelik, B., Ozgen, S., & Ergun, F. (2010). Antibacterial, Antifungal, and Antiviral Activities of Some Flavonoids. Microbiological Research, 165(6), 496-504. https://doi.org/10.1016/j.micres.2009.09.002
- Park, S., Kim, J.I., Lee, I., Lee, S., Hwang, M.W., Bae, J.Y., … Park, M.S. (2013). Aronia Melanocarpa and Its Components Demonstrate Antiviral Activity against Influenza Viruses. Biochemical and Biophysical Research Communications, 440(1), 14-19. https://doi.org/10.1016/j.bbrc.2013.08.090
- Pleschka, S., Stein, M., Schoop, R., & Hudson, J.B. (2009). Anti-Viral Properties and Mode of Action of Standardized Echinacea Purpurea Extract against Highly Pathogenic Avian Influenza Virus (H5N1, H7N7) and Swine-Origin H1N1 (S-OIV). Virology Journal, 6, 197. https://doi.org/10.1186/1743-422X-6-197
- Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-Infective Properties of the Golden Spice Curcumin. Frontiers in Microbiology, 10, 912. https://doi.org/10.3389/fmicb.2019.00912
- Roschek, B. Jr., Fink, R.C., McMichael, M.D., Li, D., & Alberte, R.S. (2009). Elderberry Flavonoids Bind to and Prevent H1N1 Infection in Vitro. Phytochemistry, 70(10), 1255-1261. https://doi.org/10.1016/j.phytochem.2009.06.003
- Ryu, Y.B., Jeong, H.J., Kim, J.H., Kim, Y.M., Park, J.Y., Kim, D., … Lee, W.S. (2010). Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CLpro Inhibition. Bioorganic and Medicinal Chemistry, 18(22), 7940-7947. https://doi.org/10.1016/j.bmc.2010.09.035
- Serkedjieva, J., Manolova, N., Zgórniak‐Nowosielska, I., Zawilińska, B., & Grzybek, J. (1990). Antiviral Activity of the Infusion (SHS‐174) from Flowers of Sambucus Nigra L., Aerial Parts of Hypericum Perforatum L., and Roots of Saponaria Officinalis L. against Influenza and Herpes Simplex Viruses. Phytotherapy Research, 4(3), 97-100. https://doi.org/10.1002/ptr.2650040305
- Sheu, T.G., Deyde, V.M., Okomo-Adhiambo, M., Garten, R.J., Xu, X., Bright, R.A., … Gubareva, L.V. (2008). Surveillance for Neuraminidase Inhibitor Resistance among Human Influenza A and B Viruses Circulating Worldwide from 2004 to 2008. Antimicrobial Agents and Chemotherapy, 52(9), 3284-3292. https://doi.org/10.1128/AAC.00555-08.
- Sun, P., Lu, X., Xu, C., Sun, W., & Pan, B. (2020). Understanding of COVID-19 Based on Current Evidence. Journal of Medical Virology, https://doi.org/10.1002/jmv.25722 [Epub ahead of print]
- Ulbricht, C., Basch, E., Cheung, L., Goldberg, H., Hammerness, P., Isaac, R., … Wortley, J. (2014). An Evidence-Based Systematic Review of Elderberry and Elderflower (Sambucus Nigra) by the Natural Standard Research Collaboration. Journal of Dietary Supplements, 11(1), 80-120. https://doi.org/10.3109/19390211.2013.859852
- Uncini Manganelli, R.E., Zaccaro, L., & Tomei, PE. (2005). Antiviral Activity in Vitro of Urtica Dioica L., Parietaria Diffusa M. et K. and Sambucus Nigra L. Journal of Ethnopharmacology, 98(3), 323-327. https://doi.org/10.1016/j.jep.2005.01.021
- Utsunomiya, T., Kobayashi, M., Pollard, R.B., & Suzuki, F. (1997). Glycyrrhizin, an Active Component of Licorice Roots, Reduces Morbidity and Mortality of Mice Infected with Lethal Doses of Influenza Virus. Antimicrobial Agents and Chemotherapy, 41(3), 551-556. https://doi.org/10.1128/aac.41.3.551
- Vallès, J., Bonet, M.A., & Agelet, A. (2004). Ethnobotany of Sambucus Nigra L. in Catalonia (Iberian Peninsula): The Integral Exploitation of a Natural Resource in Mountain Regions. Economic Botany, 58(3), 456-469. https://doi.org/10.1663/0013-0001(2004)058[0456:EOSNLI]2.0.CO;2
- van Rossum, T.G., Vulto, A.G., de Man, R.A., Brouwer, J.T., & Schalm, S.W. (1998). Glycyrrhizin as a Potential Treatment for Chronic Hepatitis C. Alimentary Pharmacology and Therapeutics, 12(3), 199-205. https://doi.org/10.1046/j.1365-2036.1998.00309.x
- Weber, N.D., Andersen, D.O., North, J.A., Murray, B.K., Lawson, L.D., & Hughes, B.G. (1992). In Vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Medica, 58(5), 417-423. https://doi.org/10.1055/s-2006-961504
- Wen, C.C., Kuo, Y.H., Jan, J.T., Liang, P.H., Wang, S.Y., Liu, H.G., … Yang, N.S. (2007). Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. Journal of Medicinal Chemistry, 50(17), 4087-4095. https://doi.org/10.1021/jm070295s
- Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang J. (2015). Quercetin as an Antiviral Agent Inhibits Influenza a Virus (IAV) Entry. Viruses, 8(1), 6. https://doi.org/10.3390/v8010006
- Xu, J., Xu, Z., & Zheng, W. (2017). A Review of the Antiviral Role of Green Tea Catechins. Molecules, 22(8), pii: E1337. https://doi.org/10.3390/molecules22081337
- Yan, H., Ma, L., Wang, H., Wu, S., Huang, H., Gu, Z., … Li, Y. (2019). Luteolin Decreases the Yield of Influenza A Virus in Vitro by Interfering with the Coat Protein I Complex Expression. Journal of Natural Medicines, 73(3), 487-496. https://doi.org/10.1007/s11418-019-01287-7
- Yarmolinsky, L., Huleihel, M., Zaccai, M., & Ben-Shabat, S. (2012). Potent Antiviral Flavone Glycosides from Ficus Benjamina Leaves. Fitoterapia, 83(2), 362-367. https://doi.org/10.1016/j.fitote.2011.11.014
- Yu, M.S., Lee, J., Lee, J.M., Kim, Y., Chin, Y.W., Jee, J.G., … Jeong, Y.J. (2012). Identification of Myricetin and Scutellarein as Novel Chemical Inhibitors of the SARS Coronavirus Helicase, NsP13. Bioorganic and Medicinal Chemistry Letters, 22(12), 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081
- Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. (2004). Randomized Study of the Efficacy and Safety of Oral Elderberry Extract in the Treatment of Influenza A and B Virus Infections. Journal of International Medical Research, 32(2), 132-140. https://doi.org/10.1177/147323000403200205
- Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., & Mumcuoglu, M. (1995). Inhibition of Several Strains of Influenza Virus in Vitro and Reduction of Symptoms by an Elderberry Extract (Sambucus Nigra L.) during an Outbreak of Influenza B Panama. Journal of Alternative and Complementary Medicine, 1(4), 361-369. https://doi.org/10.1089/acm.1995.1.361
- Zandi, K., Teoh, B.T., Sam, S.S., Wong, P.F., Mustafa, M.R., & Abubakar, S. (2011). Antiviral Activity of Four Types of Bioflavonoid against Dengue Virus Type-2. Virology Journal, 8, 560. https://doi.org/10.1186/1743-422X-8-560
- Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., … Hattori, T. (2009). Procyanidins and Butanol Extract of Cinnamomi Cortex Inhibit SARS-CoV Infection. Antiviral Research, 82(1), 73-81. https://doi.org/10.1016/j.antiviral.2009.02.001
Phytotherapeutics with Antiviral Effect: Medicinal Plants and Phytochemicals
Yıl 2020,
Cilt: 1 Sayı: 2, 2 - 20, 09.05.2020
Miray Ege
,
Mahfuz Elmastaş
Öz
Viral infections affect millions of people each year and generally cause severe infections and even deaths. Commonly used antiviral drugs often have limited efficacy and can cause serious side effects, and therefore effective new antiviral strategies are still needed.
Medicinal plants have been used for therapeutic purposes since ancient times and natural-based phytotherapeutics with their antiviral properties can be an effective option for the treatment of viral diseases. Although inhibition of viral replication is often thought to be a general mechanism for antiviral activity of natural products, studies have shown that some natural products may also interact with virulence-related key viral proteins. In this sense, derivatives of some naturally sourced compounds themselves or synthesized using them as a master template may shed light on developing more effective new antiviral drug designs. In addition, many natural products with antiviral activity are the main components of food supplements that can be used in some epidemics to increase the immunity of the general population. Given the challenges and possibilities of antiviral therapy, this study aims to compile evidence-based data on medicinal plants and related phytochemicals with antiviral activity.
Kaynakça
- Antonelli, G., & Pistello, M. (2019). Virology: A Scientific Discipline Facing New Challenges. Clinical Microbiology and Infection, 25(2), 133-135. https://doi.org/10.1016/j.cmi.2018.12.003
- Armanini, D., Fiore, C., Mattarello, M.J., Bielenberg, J., & Palermo, M. (2002). History of the Endocrine Effects of Licorice. Experimental and Clinical Endocrinology and Diabetes, 110(6), 257-261. https://doi.org/10.1055/s-2002-34587
- Bachmetov, L., Gal-Tanamy, M., Shapira, A., Vorobeychik, M., Giterman-Galam, T., Sathiyamoorthy, P., … Zemel, R. (2012). Suppression of Hepatitis C Virus by the Flavonoid Quercetin Is Mediated by Inhibition of NS3 Protease Activity. Journal of Viral Hepatitis, 19(2), e81-88. https://doi.org/10.1111/j.1365-2893.2011.01507.x
- Ben-Shabat, S., Yarmolinsky, L., Porat, D., & Dahan, A. (2020). Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research, 10(2), 354-367. https:// doi: 10.1007/s13346-019-00691-6.
Blumenthal M, Goldberg A, Brinckmann J, Foster S. 2000. Herbal Medicine. Expanded Commission E Monographs, American Botanical Council: Austin TX, 233–239.
- Chang, J.S., Wang, K.C., Yeh, C.F., Shieh, D.E., & Chiang, L.C. (2013). Fresh Ginger (Zingiber Officinale) Has Anti-Viral Activity against Human Respiratory Syncytial Virus in Human Respiratory Tract Cell Lines. Journal of Ethnopharmacology, 145(1), 146-151.
https://doi.org/10.1016/j.jep.2012.10.043
- Chen, C.N., Lin, C.P., Huang, K.K., Chen, W.C., Hsieh, H.P., Liang, P.H., & Hsu, J.T. (2005). Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3′- Digallate (TF3). Evidence-Based Complementary and Alternative Medicine, 2(2), 209-215.
https://doi.org/10.1093/ecam/neh081
- Cheng, P.W., Ng, L.T., Chiang, L.C., & Lin, C.C. (2006). Antiviral Effects of Saikosaponins on Human Coronavirus 229E in Vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616. https://doi.org/10.1111/j.1440-1681.2006.04415.x
- Chiang, L.C., Chiang, W., Liu, M.C., & Lin, C.C. (2003). In Vitro Antiviral Activities of Caesalpinia Pulcherrima and Its Related Flavonoids. Journal of Antimicrobial Chemotherapy, 52(2), 194-198. https://doi.org/10.1093/jac/dkg291
- Chiow, K.H., Phoon, M.C., Putti, T., Tan, B.K., & Chow, V.T. (2016). Evaluation of Antiviral Activities of Houttuynia Cordata Thunb. Extract, Quercetin, Quercetrin and Cinanserin on Murine Coronavirus and Dengue Virus Infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1-7. https://doi.org/10.1016/j.apjtm.2015.12.002
- Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H.W. (2003). Glycyrrhizin, an Active Component of Liquorice Roots, and Replication of SARS-Associated Coronavirus. Lancet, 361(9374), 2045-2046. https://doi.org/10.1016/S0140-6736(03)13615-X
- Dai, W., Bi, J., Li, F., Wang, S., Huang, X., Meng, X., … Su, W. (2019). Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses, 11(7), pii: E625. https://doi.org/10.3390/v11070625
- dos Santos, A.E., Kuster, R.M., Yamamoto, K.A., Salles, T.S., Campos, R., de Meneses, M.D., … Ferreira, D. (2014). Quercetin and Quercetin 3-O-Glycosides from Bauhinia Longifolia (Bong.) Steud. Show Anti-Mayaro Virus Activity. Parasites and Vectors, 7, 130.
https://doi.org/10.1186/1756-3305-7-130
- Droebner, K., Ehrhardt, C., Poetter, A., Ludwig, S., & Planz, O. (2007). CYSTUS052, a Polyphenol-Rich Plant Extract, Exerts Anti-Influenza Virus Activity in Mice. Antiviral Research, 76(1), 1-10. https://doi.org/10.1016/j.antiviral.2007.04.001
- Ehrhardt, C., Hrincius, E.R., Korte, V., Mazur, I., Droebner, K., Poetter, A. … Ludwig, S. (2007). A Polyphenol Rich Plant Extract, CYSTUS052, Exerts Anti Influenza Virus Activity in Cell Culture without Toxic Side Effects or the Tendency to Induce Viral Resistance. Antiviral Research, 76(1), 38-47. https://doi.org/10.1016/j.antiviral.2007.05.002
- Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., & Bielenberg, J. (2008). Antiviral Effects of Glycyrrhiza Species. Phytotherapy Research, 22(2), 141-148. https://doi.org/10.1002/ptr.2295
- Fiore, C., Eisenhut, M., Ragazzi, E., Zanchin, G., & Armanini, D. (2005). A History of the Therapeutic Use of Liquorice in Europe. Journal of Ethnopharmacology, 99(3), 317-324. https://doi.org/10.1016/j.jep.2005.04.015
- Fredrickson, WR, F and S Group, Inc. Method and Composition for Antiviral Therapy with Olive Leaves. U.S. Patent. 2000; 6: 117:884.
- Ganesan, S., Faris, A.N., Comstock, A.T., Wang, Q., Nanua, S., Hershenson, M.B., & Sajjan, U.S. (2012). Quercetin Inhibits Rhinovirus Replication in Vitro and in Vivo. Antiviral Research, 94(3), 258-271. https://doi.org/10.1016/j.antiviral.2012.03.005
- Glatthaar-Saalmüller, B., Rauchhaus, U., Rode, S., Haunschild, J., & Saalmüller, A. (2011). Antiviral Activity in Vitro of Two Preparations of the Herbal Medicinal Product Sinupret® against Viruses Causing Respiratory Infections. Phytomedicine, 19(1), 1-7. https://doi.org/10.1016/j.phymed.2011.10.010
- Gonzalez, O., Fontanes, V., Raychaudhuri, S., Loo, R., Loo, J., Arumugaswami, V., … French, S.W. (2009). The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production. Hepatology, 50(6), 1756-1764. https://doi.org/10.1002/hep.23232
- Ho, G.T., Ahmed, A., Zou, Y.F., Aslaksen, T., Wangensteen, H., & Barsett, H. (2015). Structure-Activity Relationship of Immunomodulating Pectins from Elderberries. Carbohydrate Polymers, 125, 314-322. https://doi.org/10.1016/j.carbpol.2015.02.057
- Hoever, G., Baltina, L., Michaelis, M., Kondratenko, R., Baltina, L., Tolstikov, G.A., … Cinatl, J.Jr. (2005). Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS-Coronavirus. Journal of Medicinal Chemistry, 48(4), 1256-1259. https://doi.org/10.1021/jm0493008
- Ibrahim, A.K., Youssef, A.I., Arafa, A.S., & Ahmed, S.A. (2013). Anti-H5N1 Virus Flavonoids from Capparis Sinaica Veill. Natural Product Research, 27(22), 2149-2153. https://doi.org/10.1080/14786419.2013.790027
- Islam, M.T., Sarkar, C., El-Kersh, D.M., Jamaddar, S., Uddin, S.J., Shilpi, J.A., & Mubarak, M.S. (2020). Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, https://doi: 10.1002/ptr.6700 [Epub ahead of print]
- Ito, T., Suzuki, Y., Mitnaul, L., Vines, A., Kida, H., & Kawaoka, Y. (1997). Receptor Specificity of Influenza A Viruses Correlates with the Agglutination of Erythrocytes from Different Animal Species. Virology, 227(2), 493-499. https://doi.org/10.1006/viro.1996.8323
- Kinoshita, E., Hayashi, K., Katayama, H., Hayashi, T., & Obata, A. (2012). Anti-Influenza Virus Effects of Elderberry Juice and Its Fractions. Bioscience, Biotechnology and Biochemistry, 76(9), 1633-1638. https://doi.org/10.1271/bbb.120112
- Lee, M., Son, M., Ryu, E., Shin, Y.S., Kim, J.G., Kang, B.W., … Kang, H. (2015). Quercetin-Induced Apoptosis Prevents EBV Infection. Oncotarget, 6(14), 12603-12624. https://doi.org/10.18632/oncotarget.3687
- Li, Y.L., Li, K.M., Su, M.X., Leung, K.T., Chen, Y.W., & Zhang, Y.W. (2006). Studies on Antiviral Constituents in Stems and Leaves of Pithecellibium Clypearia. Zhongguo Zhongyao Zazhi, 31(5), 397-400.
- Lin, C.W., Tsai, F.J., Tsai, C.H., Lai, C.C., Wan, L., Ho, T.Y., … Chao, P.D. (2005). Anti-SARS Coronavirus 3C-like Protease Effects of Isatis Indigotica Root and Plant-Derived Phenolic Compounds. Antiviral Research, 68(1), 36-42. https://doi.org/10.1016/j.antiviral.2005.07.002
- Ma, S.C., He, Z.D., Deng, X.L., But, P.P., Ooi, V.E., Xu, H.X., … Lee, S.F. (2001). In Vitro Evaluation of Secoiridoid Glucosides from the Fruits of Ligustrum Lucidum as Antiviral Agents. Chemical and Pharmaceutical Bulletin, 49(11), 1471-1473. https://doi.org/10.1248/cpb.49.1471
- Mandenius, C.F., Wang, R., Aldén, A., Bergström, G., Thébault, S., Lutsch, C., & Ohlson, S. (2008). Monitoring of Influenza Virus Hemagglutinin in Process Samples Using Weak Affinity Ligands and Surface Plasmon Resonance. Analytica Chimica Acta, 623(1), 66-75. https://doi.org/10.1016/j.aca.2008.06.005
- Morag, A.M., Mumcuoglu, M., Baybikov, T., Schlesinger, M., & Zakay-Rones, Z. (1997). Inhibition of sensitive and acyclovirresistant HSF-1 strains by an elderberry extract in vitro. Xth International Congress of Virology Jerusalem, Israel; 11– 16 August 1996. Phytoparasitica 25: 1.
- Neznanov, N., Kondratova, A., Chumakov, K.M., Neznanova, L., Kondratov, R., Banerjee, A.K., & Gudkov, A.V. (2008). Quercetinase Pirin Makes Poliovirus Replication Resistant to Flavonoid Quercetin. DNA and Cell Biology, 27(4), 191-198. https://doi.org/10.1089/dna.2007.0682
- Nováková, L., Pavlík, J., Chrenková, L., Martinec, O., & Červený, L. (2018). Current Antiviral Drugs and Their Analysis in Biological Materials – Part II: Antivirals against Hepatitis and HIV Viruses. Journal of Pharmaceutical and Biomedical Analysis, 147, 378-399. https://doi.org/10.1016/j.jpba.2017.07.003
- Orhan, D.D., Ozçelik, B., Ozgen, S., & Ergun, F. (2010). Antibacterial, Antifungal, and Antiviral Activities of Some Flavonoids. Microbiological Research, 165(6), 496-504. https://doi.org/10.1016/j.micres.2009.09.002
- Park, S., Kim, J.I., Lee, I., Lee, S., Hwang, M.W., Bae, J.Y., … Park, M.S. (2013). Aronia Melanocarpa and Its Components Demonstrate Antiviral Activity against Influenza Viruses. Biochemical and Biophysical Research Communications, 440(1), 14-19. https://doi.org/10.1016/j.bbrc.2013.08.090
- Pleschka, S., Stein, M., Schoop, R., & Hudson, J.B. (2009). Anti-Viral Properties and Mode of Action of Standardized Echinacea Purpurea Extract against Highly Pathogenic Avian Influenza Virus (H5N1, H7N7) and Swine-Origin H1N1 (S-OIV). Virology Journal, 6, 197. https://doi.org/10.1186/1743-422X-6-197
- Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-Infective Properties of the Golden Spice Curcumin. Frontiers in Microbiology, 10, 912. https://doi.org/10.3389/fmicb.2019.00912
- Roschek, B. Jr., Fink, R.C., McMichael, M.D., Li, D., & Alberte, R.S. (2009). Elderberry Flavonoids Bind to and Prevent H1N1 Infection in Vitro. Phytochemistry, 70(10), 1255-1261. https://doi.org/10.1016/j.phytochem.2009.06.003
- Ryu, Y.B., Jeong, H.J., Kim, J.H., Kim, Y.M., Park, J.Y., Kim, D., … Lee, W.S. (2010). Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CLpro Inhibition. Bioorganic and Medicinal Chemistry, 18(22), 7940-7947. https://doi.org/10.1016/j.bmc.2010.09.035
- Serkedjieva, J., Manolova, N., Zgórniak‐Nowosielska, I., Zawilińska, B., & Grzybek, J. (1990). Antiviral Activity of the Infusion (SHS‐174) from Flowers of Sambucus Nigra L., Aerial Parts of Hypericum Perforatum L., and Roots of Saponaria Officinalis L. against Influenza and Herpes Simplex Viruses. Phytotherapy Research, 4(3), 97-100. https://doi.org/10.1002/ptr.2650040305
- Sheu, T.G., Deyde, V.M., Okomo-Adhiambo, M., Garten, R.J., Xu, X., Bright, R.A., … Gubareva, L.V. (2008). Surveillance for Neuraminidase Inhibitor Resistance among Human Influenza A and B Viruses Circulating Worldwide from 2004 to 2008. Antimicrobial Agents and Chemotherapy, 52(9), 3284-3292. https://doi.org/10.1128/AAC.00555-08.
- Sun, P., Lu, X., Xu, C., Sun, W., & Pan, B. (2020). Understanding of COVID-19 Based on Current Evidence. Journal of Medical Virology, https://doi.org/10.1002/jmv.25722 [Epub ahead of print]
- Ulbricht, C., Basch, E., Cheung, L., Goldberg, H., Hammerness, P., Isaac, R., … Wortley, J. (2014). An Evidence-Based Systematic Review of Elderberry and Elderflower (Sambucus Nigra) by the Natural Standard Research Collaboration. Journal of Dietary Supplements, 11(1), 80-120. https://doi.org/10.3109/19390211.2013.859852
- Uncini Manganelli, R.E., Zaccaro, L., & Tomei, PE. (2005). Antiviral Activity in Vitro of Urtica Dioica L., Parietaria Diffusa M. et K. and Sambucus Nigra L. Journal of Ethnopharmacology, 98(3), 323-327. https://doi.org/10.1016/j.jep.2005.01.021
- Utsunomiya, T., Kobayashi, M., Pollard, R.B., & Suzuki, F. (1997). Glycyrrhizin, an Active Component of Licorice Roots, Reduces Morbidity and Mortality of Mice Infected with Lethal Doses of Influenza Virus. Antimicrobial Agents and Chemotherapy, 41(3), 551-556. https://doi.org/10.1128/aac.41.3.551
- Vallès, J., Bonet, M.A., & Agelet, A. (2004). Ethnobotany of Sambucus Nigra L. in Catalonia (Iberian Peninsula): The Integral Exploitation of a Natural Resource in Mountain Regions. Economic Botany, 58(3), 456-469. https://doi.org/10.1663/0013-0001(2004)058[0456:EOSNLI]2.0.CO;2
- van Rossum, T.G., Vulto, A.G., de Man, R.A., Brouwer, J.T., & Schalm, S.W. (1998). Glycyrrhizin as a Potential Treatment for Chronic Hepatitis C. Alimentary Pharmacology and Therapeutics, 12(3), 199-205. https://doi.org/10.1046/j.1365-2036.1998.00309.x
- Weber, N.D., Andersen, D.O., North, J.A., Murray, B.K., Lawson, L.D., & Hughes, B.G. (1992). In Vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Medica, 58(5), 417-423. https://doi.org/10.1055/s-2006-961504
- Wen, C.C., Kuo, Y.H., Jan, J.T., Liang, P.H., Wang, S.Y., Liu, H.G., … Yang, N.S. (2007). Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. Journal of Medicinal Chemistry, 50(17), 4087-4095. https://doi.org/10.1021/jm070295s
- Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., & Yang J. (2015). Quercetin as an Antiviral Agent Inhibits Influenza a Virus (IAV) Entry. Viruses, 8(1), 6. https://doi.org/10.3390/v8010006
- Xu, J., Xu, Z., & Zheng, W. (2017). A Review of the Antiviral Role of Green Tea Catechins. Molecules, 22(8), pii: E1337. https://doi.org/10.3390/molecules22081337
- Yan, H., Ma, L., Wang, H., Wu, S., Huang, H., Gu, Z., … Li, Y. (2019). Luteolin Decreases the Yield of Influenza A Virus in Vitro by Interfering with the Coat Protein I Complex Expression. Journal of Natural Medicines, 73(3), 487-496. https://doi.org/10.1007/s11418-019-01287-7
- Yarmolinsky, L., Huleihel, M., Zaccai, M., & Ben-Shabat, S. (2012). Potent Antiviral Flavone Glycosides from Ficus Benjamina Leaves. Fitoterapia, 83(2), 362-367. https://doi.org/10.1016/j.fitote.2011.11.014
- Yu, M.S., Lee, J., Lee, J.M., Kim, Y., Chin, Y.W., Jee, J.G., … Jeong, Y.J. (2012). Identification of Myricetin and Scutellarein as Novel Chemical Inhibitors of the SARS Coronavirus Helicase, NsP13. Bioorganic and Medicinal Chemistry Letters, 22(12), 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081
- Zakay-Rones, Z., Thom, E., Wollan, T., & Wadstein, J. (2004). Randomized Study of the Efficacy and Safety of Oral Elderberry Extract in the Treatment of Influenza A and B Virus Infections. Journal of International Medical Research, 32(2), 132-140. https://doi.org/10.1177/147323000403200205
- Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., & Mumcuoglu, M. (1995). Inhibition of Several Strains of Influenza Virus in Vitro and Reduction of Symptoms by an Elderberry Extract (Sambucus Nigra L.) during an Outbreak of Influenza B Panama. Journal of Alternative and Complementary Medicine, 1(4), 361-369. https://doi.org/10.1089/acm.1995.1.361
- Zandi, K., Teoh, B.T., Sam, S.S., Wong, P.F., Mustafa, M.R., & Abubakar, S. (2011). Antiviral Activity of Four Types of Bioflavonoid against Dengue Virus Type-2. Virology Journal, 8, 560. https://doi.org/10.1186/1743-422X-8-560
- Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., … Hattori, T. (2009). Procyanidins and Butanol Extract of Cinnamomi Cortex Inhibit SARS-CoV Infection. Antiviral Research, 82(1), 73-81. https://doi.org/10.1016/j.antiviral.2009.02.001