Tartışma
BibTex RIS Kaynak Göster

Luteolin Molekülü Covid-19 ile Mücadelede Bir Seçenek Olabilir mi?

Yıl 2021, Cilt: 2 Sayı: 3, 78 - 89, 24.10.2021
https://doi.org/10.53445/batd.925584

Öz

SARS-Cov-2 tüm dünyayı etkisi altına alan ve inhibisyonuna yönelik henüz kesin bir tedavi yöntemi geliştirilememiş bir virüstür. Mevcut tedavi protokolleri yeterli çözüm ortaya koyamamıştır. Virüs inhibisyonuna yönelik yapılan moleküler docking çalışmalarında doğal ürünler arasında Luteolin molekülü öne çıkmaktadır. Luteolin molekülü, Origanum vulgare, Apium graveolens, Thymus vulgaris başta olmak üzere birçok bitkide doğal olarak bulunan bir moleküldür. Luteolin, İran, Brezilya ve geleneksel Çin Tıbbında enflamasyon ile birlikte devam eden hastalıkların tedavisinde uzun süredir kullanılagelmiştir. Antioksidan, antimikrobial, antienflamatuar, kemopreventif, kemoterapötik, kardioprotektif, antidiabetik, nöroprotektif ve antialerjik özelliklere sahip, termostabil bir moleküldür. Luteolin molekülü SARS-Cov-2’nin hücre içine girerken kullandığı furin bağlanma bölgesine bağlanarak, virüsün hücre içine girmesini engelleyebilir. Mevcut kullanım alanları, etki mekanizmaları, SARS-CoV-2 patofizyolojisi ve moleküler docking çalışmaları birlikte değerlendirildiğinde, Covid-19 ile mücadelede Luteolin molekülü umut verici bir terapötik ajan olarak öne çıkmaktadır.

Teşekkür

Değerli katkılarından dolayı Prof. Dr. Mahfuz Elmastaş ve Doç. Dr. Zafer Ömer Özdemir hocalarıma teşekkür ederim.

Kaynakça

  • 1. Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine. https://doi.org/10.1016/j.phymed.2019.152883
  • 2. Andarwulan, N., Batari, R., Sandrasari, D. A., Bolling, B., & Wijaya, H. (2010). Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chemistry. https://doi.org/10.1016/j.foodchem.2010.01.033
  • 3. Arabbi, P. R., Genovese, M. I., & Lajolo, F. M. (2004). Flavonoids in Vegetable Foods Commonly Consumed in Brazil and Estimated Ingestion by the Brazilian Population. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0499525
  • 4. Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R., & Kinae, N. (2000). Dietary Intakes of Flavonols, Flavones and Isoflavones by Japanese Women and the Inverse Correlation between Quercetin Intake and Plasma LDL Cholesterol Concentration. The Journal of Nutrition. https://doi.org/10.1093/jn/130.9.2243
  • 5. Areias, F. M., Valentão, P., Andrade, P. B., Ferreres, F., & Seabra, R. M. (2001). Phenolic fingerprint of peppermint leaves. Food Chemistry, 73(3), 307–311. https://doi.org/10.1016/S0308-8146(00)00302-2
  • 6. Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.1820
  • 7. Bosch, B. J., van der Zee, R., de Haan, C. A. M., & Rottier, P. J. M. (2003). The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. Journal of Virology. https://doi.org/10.1128/jvi.77.16.8801-8811.2003
  • 8. Bravo, L. (2009). Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrition Reviews. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  • 9. Cao, Z., Zhang, H., Cai, X., Fang, W., Chai, D., Wen, Y., … Zhang, Y. (2018). Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. Cellular Physiology and Biochemistry. https://doi.org/10.1159/000484066
  • 10. Channappanavar, R., Zhao, J., & Perlman, S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic Research. https://doi.org/10.1007/s12026-014-8534-z
  • 11. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., … Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30211-7
  • 12. Chen, P., Zhang, J. Y., Sha, B. B., Ma, Y. E., Hu, T., Ma, Y. C., … Li, P. (2017). Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget. https://doi.org/10.18632/oncotarget.15832
  • 13. Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.02.071
  • 14. Choi, S.-M., Kim, B. C., Cho, Y.-H., Choi, K.-H., Chang, J., Park, M.-S., … Kim, J.-K. (2014). Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse Cortical Neurons. Chonnam Medical Journal. https://doi.org/10.4068/cmj.2014.50.2.45
  • 15. Coleta, M., Campos, M. G., Cotrim, M. D., Lima, T. C. M. d., & Cunha, A. P. da. (2008). Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2007.12.010
  • 16. Dykes, L., Seitz, L. M., Rooney, W. L., & Rooney, L. W. (2009). Flavonoid composition of red sorghum genotypes. Food Chemistry. https://doi.org/10.1016/j.foodchem.2009.02.052
  • 17. Farzaei, M. H., Abbasabadi, Z., Ardekani, M. R. S., Rahimi, R., & Farzaei, F. (2013). Parsley: a review of ethnopharmacology, phytochemistry and biological activities. Journal of Traditional Chinese Medicine. https://doi.org/10.1016/s0254-6272(14)60018-2
  • 18. Ferrari, F. C., Ferreira, L. C., Souza, M. R., Grabe-Guimarães, A., Paula, C. A., Rezende, S. A., & Saúde-Guimarães, D. A. (2013). Anti-inflammatory sesquiterpene lactones from lychnophora trichocarpha spreng. (Brazilian Arnica). Phytotherapy Research. https://doi.org/10.1002/ptr.4736
  • 19. Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis. https://doi.org/10.1016/S0889-1575(03)00066-8
  • 20. Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. https://doi.org/10.1002/path.1570
  • 21. Han, K., Meng, W., Zhang, J. J., Zhou, Y., Wang, Y. L., Su, Y., … Min, D. L. (2016). Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. OncoTargets and Therapy. https://doi.org/10.2147/OTT.S102862
  • 22. Harnly, J. M., Doherty, R. F., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Bhagwat, S., & Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf061478a
  • 23. Hertog, Michael G.L., Hollman, P. C. H., Hertog, M. G. L., & Katan, M. B. (1992). Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf00024a011
  • 24. Hertog, Michaël G.L., Hollman, P. C. H., & Venema, D. P. (1992). Optimization of a Quantitative HPLC Determination of Potentially Anticarcinogenic Flavonoids in Vegetables and Fruits. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf00021a023
  • 25. Hindarto, C. K., Lestari, E. S., Irawan, C., & Rochaeni, H. (2017). Antioxidant activity of luteolin extracted from nutshell waste Arachis Hypogea. Int J Res Pharm Pharm Sci, 2(6), 28–30.
  • 26. Hoffmann-Ribani, R., Huber, L. S., & Rodriguez-Amaya, D. B. (2009). Flavonols in fresh and processed Brazilian fruits. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2008.12.004
  • 27. Hu, L. W., Yen, J. H., Shen, Y. T., Wu, K. Y., & Wu, M. J. (2014). Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0097880
  • 28. Innocenti, M., Gallori, S., Giaccherini, C., Ieri, F., Vincieri, F. F., & Mulinacci, N. (2005). Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf050541d
  • 29. Innocenti, M., Michelozzi, M., Giaccherini, C., Ieri, F., Vincieri, F. F., & Mulinacci, N. (2007). Flavonoids and biflavonoids in tuscan berries of Juniperus communis L.: Detection and quantitation by HPLC/DAD/ESI/MS. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf070257h
  • 30. Jiang, Z. Q., Li, M. H., Qin, Y. M., Jiang, H. Y., Zhang, X., & Wu, M. H. (2018). Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of microRNA-34a-5p. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020447
  • 31. Justesen, U., & Knuthsen, P. (2001). Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry. https://doi.org/10.1016/S0308-8146(01)00114-5
  • 32. Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A. https://doi.org/10.1016/S0021-9673(97)01061-3
  • 33. Kang, K. A., Piao, M. J., Ryu, Y. S., Hyun, Y. J., Park, J. E., Shilnikova, K., … Hyun, J. W. (2017). Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. International Journal of Oncology. https://doi.org/10.3892/ijo.2017.4091
  • 34. Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods. https://doi.org/10.1016/j.jff.2017.01.022
  • 35. Kwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Experimental Gerontology. https://doi.org/10.1016/j.exger.2017.05.014
  • 36. Lattanzio, V., & van Sumere, C. F. (1987). Changes in phenolic compounds during the development and cold storage of artichoke (Cynara scolymus L.) heads. Food Chemistry. https://doi.org/10.1016/0308-8146(87)90082-3
  • 37. Li, W., Moore, M. J., Vasllieva, N., Sui, J., Wong, S. K., Berne, M. A., … Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. https://doi.org/10.1038/nature02145
  • 38. Lin, L. Z., Lu, S., & Harnly, J. M. (2007). Detection and quantification of glycosylated flavonoid malonates in celery, chinese celery, and celery seed by LC-DAD-ESI/MS. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0624796
  • 39. Lin, L. Z., Mukhopadhyay, S., Robbins, R. J., & Harnly, J. M. (2007). Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2006.09.005
  • 40. Lin, Y., Shi, R., Wang, X., & Shen, H.-M. (2008). Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Current Cancer Drug Targets. https://doi.org/10.2174/156800908786241050
  • 41. Lopez-Lazaro, M. (2008). Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews in Medicinal Chemistry. https://doi.org/10.2174/138955709787001712
  • 42. Lou, L., Liu, Y., Zhou, J., Wei, Y., Deng, J., Dong, B., & Chai, L. (2015). Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1 β -induced fibroblast-like synoviocytes through regulating the activation of NF- B and JAK/STAT-signaling pathways. Immunopharmacology and Immunotoxicology. https://doi.org/10.3109/08923973.2015.1095763
  • 43. Lugasi, A., & Hóvári, J. (2000). Flavonoid aglycons in foods of plant origin I. vegetables. Acta Alimentaria. https://doi.org/10.1556/AAlim.29.2000.4.4
  • 44. Lugasi, A., & Hóvári, J. (2002). Flavonoid aglycons in foods of plant origin II. Fresh and dried fruits. Acta Alimentaria. https://doi.org/10.1556/AAlim.31.2002.1.7
  • 45. Materska, M., & Perucka, I. (2005). Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry, 53(5), 1750–1756. https://doi.org/10.1021/jf035331k
  • 46. Mattila, P., Astola, J., & Kumpulainen, J. (2000). Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf000661f
  • 47. Micholas, S., & Jeremy C., S. (2020). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv. https://doi.org/10.26434/chemrxiv.11871402.v4
  • 48. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf000892m
  • 49. Mukinda, J. T. (2005). Acute and chronic toxicity of the flavonoid- containing plant , Artemisia afra in rodents Keywords. University of Western Cape (MSc Dissertation).
  • 50. Nunes, C., Almeida, L., Barbosa, R. M., & Laranjinha, J. (2017). Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food and Function. https://doi.org/10.1039/c6fo01529h
  • 51. Patil, S. P., Jain, P. D., Sancheti, J. S., Ghumatkar, P. J., Tambe, R., & Sathaye, S. (2014). Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2014.07.012
  • 52. Pellegrini, N., Chiavaro, E., Gardana, C., Mazzeo, T., Contino, D., Gallo, M., … Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf904306r
  • 53. Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., … Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Research. https://doi.org/10.1016/j.antiviral.2017.03.026
  • 54. Rabi, F. A., Al Zoubi, M. S., Al-Nasser, A. D., Kasasbeh, G. A., & Salameh, D. M. (2020). Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. https://doi.org/10.3390/pathogens9030231
  • 55. Ramalingam, R., Suk Bok, P., Byoung Kyu, L., & In Youl, B. (2013). Evaluation of luteolin from shells of Korean peanut cultivars for industrial utilization. African Journal of Biotechnology. https://doi.org/10.5897/ajb2013.12911
  • 56. Ramezani, M., Nasri, S., & Yassa, N. (2009). Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharmaceutical Biology. https://doi.org/10.1080/13880200902939283
  • 57. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. https://doi.org/10.1007/s00134-020-05991-x
  • 58. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., & Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf020926l
  • 59. Sampson, L., Rimm, E., Hollman, P. C. H., De Vries, J. H. M., & Katan, M. B. (2002). Flavonol and flavone intakes in US health professionals. Journal of the American Dietetic Association. https://doi.org/10.1016/S0002-8223(02)90314-7
  • 60. Schütz, K., Kammerer, D., Carle, R., & Schieber, A. (2004). Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf049625x
  • 61. Taliou, A., Zintzaras, E., Lykouras, L., & Francis, K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapeutics. https://doi.org/10.1016/j.clinthera.2013.04.006
  • 62. Tian, D., Liu, Y., Liang, C., Xin, L., Xie, X., Zhang, D., … Cao, W. (2021). An update review of emerging small-molecule therapeutic options for COVID-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137, 111313. https://doi.org/10.1016/j.biopha.2021.111313
  • 63. Trichopoulou, A., Vasilopoulou, E., Hollman, P., Chamalides, C., Foufa, E., Kaloudis, T., … Theophilou, D. (2000). Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chemistry. https://doi.org/10.1016/S0308-8146(00)00091-1
  • 64. Tuorkey, M. J. (2016). Molecular targets of luteolin in cancer. European Journal of Cancer Prevention. https://doi.org/10.1097/CEJ.0000000000000128
  • 65. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058
  • 66. Wang, M., Simon, J. E., Aviles, I. F., He, K., Zheng, Q. Y., & Tadmor, Y. (2003). Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf020792b
  • 67. Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.04.038
  • 68. World Health Organisation. (n.d.). Retrieved February 6, 2021, from https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  • 69. Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., & Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. Journal of Pharmacology and Experimental Therapeutics.
  • 70. Yang, R. Y., Lin, S., & Kuo, G. (2008). Content and distribution of flavonoids among 91 edible plant species. Asia Pacific Journal of Clinical Nutrition. https://doi.org/10.6133/apjcn.2008.17.s1.66
  • 71. Yang, S. F., Yang, W. E., Chang, H. R., Chu, S. C., & Hsieh, Y. S. (2008). Luteolin induces apoptosis in oral squamous cancer cells. Journal of Dental Research. https://doi.org/10.1177/154405910808700413
  • 72. Yoshikawa, T., Hill, T., Li, K., Peters, C. J., & Tseng, C.-T. K. (2009). Severe Acute Respiratory Syndrome (SARS) Coronavirus-Induced Lung Epithelial Cytokines Exacerbate SARS Pathogenesis by Modulating Intrinsic Functions of Monocyte-Derived Macrophages and Dendritic Cells. Journal of Virology. https://doi.org/10.1128/jvi.01792-08
  • 73. Young, J. E., Zhao, X., Carey, E. E., Welti, R., Yang, S. S., & Wang, W. (2005). Phytochemical phenolics in organically grown vegetables. Molecular Nutrition and Food Research. https://doi.org/10.1002/mnfr.200500080
  • 74. Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 2(xxxx), 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • 75. Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical Immunology, 108427. https://doi.org/10.1016/j.clim.2020.108427
  • 76. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30566-3
  • 77. Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., qi, Y., … Wei, H. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review. https://doi.org/10.1093/nsr/nwaa041
  • 78. Zhu, J., Van de Ven, W. J. M., Verbiest, T., Koeckelberghs, G., Chen, C., Cui, Y., & Vermorken, A. J. M. (2013). Polyphenols Can Inhibit Furin In Vitro As A Result of the Reactivity of their Auto-oxidation Products to Proteins. Current Medicinal Chemistry. https://doi.org/10.2174/0929867311320060009
  • 79. Zhu, L., Chen, J., Tan, J., Liu, X., & Wang, B. (2017). Flavonoids from Agrimonia pilosa Ledeb: Free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. Molecules. https://doi.org/10.3390/molecules22030195

Could Luteolin Molecule be an Option in Combating Covid-19?

Yıl 2021, Cilt: 2 Sayı: 3, 78 - 89, 24.10.2021
https://doi.org/10.53445/batd.925584

Öz

SARS-CoV-2 is a virus that has affected the whole world and a definitive treatment method for its inhibition has not yet been developed. Current treatment protocols have not been able to provide a sufficient solution. As a result of molecular docking studies for virus inhibition, it is seen that the Luteolin molecule stands out among natural products. Luteolin molecule is a molecule found naturally in many plants, especially Origanum vulgare, Apium graveolens, Thymus vulgaris. Luteolin has long been used in Iran, Brazil, and traditional Chinese Medicine to treat illnesses with inflammation. It is a thermostable molecule with antioxidant, antimicrobial, anti-inflammatory, chemopreventive, chemotherapeutic, cardioprotective, antidiabetic, neuroprotective and antiallergic properties. The luteolin molecule can bind to the furin binding site that SARS-CoV-2 uses to enter the cell, thereby preventing the virus from entering the cell. When the current usage areas, mechanisms of action, SARS-CoV-2 pathophysiology and molecular docking studies are evaluated, Luteolin molecule stands out as a promising therapeutic agent in the fight against Covid-19.

Kaynakça

  • 1. Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine. https://doi.org/10.1016/j.phymed.2019.152883
  • 2. Andarwulan, N., Batari, R., Sandrasari, D. A., Bolling, B., & Wijaya, H. (2010). Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chemistry. https://doi.org/10.1016/j.foodchem.2010.01.033
  • 3. Arabbi, P. R., Genovese, M. I., & Lajolo, F. M. (2004). Flavonoids in Vegetable Foods Commonly Consumed in Brazil and Estimated Ingestion by the Brazilian Population. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0499525
  • 4. Arai, Y., Watanabe, S., Kimira, M., Shimoi, K., Mochizuki, R., & Kinae, N. (2000). Dietary Intakes of Flavonols, Flavones and Isoflavones by Japanese Women and the Inverse Correlation between Quercetin Intake and Plasma LDL Cholesterol Concentration. The Journal of Nutrition. https://doi.org/10.1093/jn/130.9.2243
  • 5. Areias, F. M., Valentão, P., Andrade, P. B., Ferreres, F., & Seabra, R. M. (2001). Phenolic fingerprint of peppermint leaves. Food Chemistry, 73(3), 307–311. https://doi.org/10.1016/S0308-8146(00)00302-2
  • 6. Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.1820
  • 7. Bosch, B. J., van der Zee, R., de Haan, C. A. M., & Rottier, P. J. M. (2003). The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. Journal of Virology. https://doi.org/10.1128/jvi.77.16.8801-8811.2003
  • 8. Bravo, L. (2009). Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrition Reviews. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  • 9. Cao, Z., Zhang, H., Cai, X., Fang, W., Chai, D., Wen, Y., … Zhang, Y. (2018). Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. Cellular Physiology and Biochemistry. https://doi.org/10.1159/000484066
  • 10. Channappanavar, R., Zhao, J., & Perlman, S. (2014). T cell-mediated immune response to respiratory coronaviruses. Immunologic Research. https://doi.org/10.1007/s12026-014-8534-z
  • 11. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., … Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30211-7
  • 12. Chen, P., Zhang, J. Y., Sha, B. B., Ma, Y. E., Hu, T., Ma, Y. C., … Li, P. (2017). Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget. https://doi.org/10.18632/oncotarget.15832
  • 13. Chen, Y., Guo, Y., Pan, Y., & Zhao, Z. J. (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.02.071
  • 14. Choi, S.-M., Kim, B. C., Cho, Y.-H., Choi, K.-H., Chang, J., Park, M.-S., … Kim, J.-K. (2014). Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse Cortical Neurons. Chonnam Medical Journal. https://doi.org/10.4068/cmj.2014.50.2.45
  • 15. Coleta, M., Campos, M. G., Cotrim, M. D., Lima, T. C. M. d., & Cunha, A. P. da. (2008). Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2007.12.010
  • 16. Dykes, L., Seitz, L. M., Rooney, W. L., & Rooney, L. W. (2009). Flavonoid composition of red sorghum genotypes. Food Chemistry. https://doi.org/10.1016/j.foodchem.2009.02.052
  • 17. Farzaei, M. H., Abbasabadi, Z., Ardekani, M. R. S., Rahimi, R., & Farzaei, F. (2013). Parsley: a review of ethnopharmacology, phytochemistry and biological activities. Journal of Traditional Chinese Medicine. https://doi.org/10.1016/s0254-6272(14)60018-2
  • 18. Ferrari, F. C., Ferreira, L. C., Souza, M. R., Grabe-Guimarães, A., Paula, C. A., Rezende, S. A., & Saúde-Guimarães, D. A. (2013). Anti-inflammatory sesquiterpene lactones from lychnophora trichocarpha spreng. (Brazilian Arnica). Phytotherapy Research. https://doi.org/10.1002/ptr.4736
  • 19. Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis. https://doi.org/10.1016/S0889-1575(03)00066-8
  • 20. Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. https://doi.org/10.1002/path.1570
  • 21. Han, K., Meng, W., Zhang, J. J., Zhou, Y., Wang, Y. L., Su, Y., … Min, D. L. (2016). Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. OncoTargets and Therapy. https://doi.org/10.2147/OTT.S102862
  • 22. Harnly, J. M., Doherty, R. F., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Bhagwat, S., & Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf061478a
  • 23. Hertog, Michael G.L., Hollman, P. C. H., Hertog, M. G. L., & Katan, M. B. (1992). Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf00024a011
  • 24. Hertog, Michaël G.L., Hollman, P. C. H., & Venema, D. P. (1992). Optimization of a Quantitative HPLC Determination of Potentially Anticarcinogenic Flavonoids in Vegetables and Fruits. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf00021a023
  • 25. Hindarto, C. K., Lestari, E. S., Irawan, C., & Rochaeni, H. (2017). Antioxidant activity of luteolin extracted from nutshell waste Arachis Hypogea. Int J Res Pharm Pharm Sci, 2(6), 28–30.
  • 26. Hoffmann-Ribani, R., Huber, L. S., & Rodriguez-Amaya, D. B. (2009). Flavonols in fresh and processed Brazilian fruits. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2008.12.004
  • 27. Hu, L. W., Yen, J. H., Shen, Y. T., Wu, K. Y., & Wu, M. J. (2014). Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0097880
  • 28. Innocenti, M., Gallori, S., Giaccherini, C., Ieri, F., Vincieri, F. F., & Mulinacci, N. (2005). Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf050541d
  • 29. Innocenti, M., Michelozzi, M., Giaccherini, C., Ieri, F., Vincieri, F. F., & Mulinacci, N. (2007). Flavonoids and biflavonoids in tuscan berries of Juniperus communis L.: Detection and quantitation by HPLC/DAD/ESI/MS. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf070257h
  • 30. Jiang, Z. Q., Li, M. H., Qin, Y. M., Jiang, H. Y., Zhang, X., & Wu, M. H. (2018). Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of microRNA-34a-5p. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020447
  • 31. Justesen, U., & Knuthsen, P. (2001). Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry. https://doi.org/10.1016/S0308-8146(01)00114-5
  • 32. Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A. https://doi.org/10.1016/S0021-9673(97)01061-3
  • 33. Kang, K. A., Piao, M. J., Ryu, Y. S., Hyun, Y. J., Park, J. E., Shilnikova, K., … Hyun, J. W. (2017). Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. International Journal of Oncology. https://doi.org/10.3892/ijo.2017.4091
  • 34. Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods. https://doi.org/10.1016/j.jff.2017.01.022
  • 35. Kwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Experimental Gerontology. https://doi.org/10.1016/j.exger.2017.05.014
  • 36. Lattanzio, V., & van Sumere, C. F. (1987). Changes in phenolic compounds during the development and cold storage of artichoke (Cynara scolymus L.) heads. Food Chemistry. https://doi.org/10.1016/0308-8146(87)90082-3
  • 37. Li, W., Moore, M. J., Vasllieva, N., Sui, J., Wong, S. K., Berne, M. A., … Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. https://doi.org/10.1038/nature02145
  • 38. Lin, L. Z., Lu, S., & Harnly, J. M. (2007). Detection and quantification of glycosylated flavonoid malonates in celery, chinese celery, and celery seed by LC-DAD-ESI/MS. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0624796
  • 39. Lin, L. Z., Mukhopadhyay, S., Robbins, R. J., & Harnly, J. M. (2007). Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis. https://doi.org/10.1016/j.jfca.2006.09.005
  • 40. Lin, Y., Shi, R., Wang, X., & Shen, H.-M. (2008). Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Current Cancer Drug Targets. https://doi.org/10.2174/156800908786241050
  • 41. Lopez-Lazaro, M. (2008). Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews in Medicinal Chemistry. https://doi.org/10.2174/138955709787001712
  • 42. Lou, L., Liu, Y., Zhou, J., Wei, Y., Deng, J., Dong, B., & Chai, L. (2015). Chlorogenic acid and luteolin synergistically inhibit the proliferation of interleukin-1 β -induced fibroblast-like synoviocytes through regulating the activation of NF- B and JAK/STAT-signaling pathways. Immunopharmacology and Immunotoxicology. https://doi.org/10.3109/08923973.2015.1095763
  • 43. Lugasi, A., & Hóvári, J. (2000). Flavonoid aglycons in foods of plant origin I. vegetables. Acta Alimentaria. https://doi.org/10.1556/AAlim.29.2000.4.4
  • 44. Lugasi, A., & Hóvári, J. (2002). Flavonoid aglycons in foods of plant origin II. Fresh and dried fruits. Acta Alimentaria. https://doi.org/10.1556/AAlim.31.2002.1.7
  • 45. Materska, M., & Perucka, I. (2005). Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and Food Chemistry, 53(5), 1750–1756. https://doi.org/10.1021/jf035331k
  • 46. Mattila, P., Astola, J., & Kumpulainen, J. (2000). Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf000661f
  • 47. Micholas, S., & Jeremy C., S. (2020). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv. https://doi.org/10.26434/chemrxiv.11871402.v4
  • 48. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf000892m
  • 49. Mukinda, J. T. (2005). Acute and chronic toxicity of the flavonoid- containing plant , Artemisia afra in rodents Keywords. University of Western Cape (MSc Dissertation).
  • 50. Nunes, C., Almeida, L., Barbosa, R. M., & Laranjinha, J. (2017). Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food and Function. https://doi.org/10.1039/c6fo01529h
  • 51. Patil, S. P., Jain, P. D., Sancheti, J. S., Ghumatkar, P. J., Tambe, R., & Sathaye, S. (2014). Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2014.07.012
  • 52. Pellegrini, N., Chiavaro, E., Gardana, C., Mazzeo, T., Contino, D., Gallo, M., … Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf904306r
  • 53. Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., … Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Research. https://doi.org/10.1016/j.antiviral.2017.03.026
  • 54. Rabi, F. A., Al Zoubi, M. S., Al-Nasser, A. D., Kasasbeh, G. A., & Salameh, D. M. (2020). Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. https://doi.org/10.3390/pathogens9030231
  • 55. Ramalingam, R., Suk Bok, P., Byoung Kyu, L., & In Youl, B. (2013). Evaluation of luteolin from shells of Korean peanut cultivars for industrial utilization. African Journal of Biotechnology. https://doi.org/10.5897/ajb2013.12911
  • 56. Ramezani, M., Nasri, S., & Yassa, N. (2009). Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharmaceutical Biology. https://doi.org/10.1080/13880200902939283
  • 57. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. https://doi.org/10.1007/s00134-020-05991-x
  • 58. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., & Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf020926l
  • 59. Sampson, L., Rimm, E., Hollman, P. C. H., De Vries, J. H. M., & Katan, M. B. (2002). Flavonol and flavone intakes in US health professionals. Journal of the American Dietetic Association. https://doi.org/10.1016/S0002-8223(02)90314-7
  • 60. Schütz, K., Kammerer, D., Carle, R., & Schieber, A. (2004). Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf049625x
  • 61. Taliou, A., Zintzaras, E., Lykouras, L., & Francis, K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapeutics. https://doi.org/10.1016/j.clinthera.2013.04.006
  • 62. Tian, D., Liu, Y., Liang, C., Xin, L., Xie, X., Zhang, D., … Cao, W. (2021). An update review of emerging small-molecule therapeutic options for COVID-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137, 111313. https://doi.org/10.1016/j.biopha.2021.111313
  • 63. Trichopoulou, A., Vasilopoulou, E., Hollman, P., Chamalides, C., Foufa, E., Kaloudis, T., … Theophilou, D. (2000). Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chemistry. https://doi.org/10.1016/S0308-8146(00)00091-1
  • 64. Tuorkey, M. J. (2016). Molecular targets of luteolin in cancer. European Journal of Cancer Prevention. https://doi.org/10.1097/CEJ.0000000000000128
  • 65. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. https://doi.org/10.1016/j.cell.2020.02.058
  • 66. Wang, M., Simon, J. E., Aviles, I. F., He, K., Zheng, Q. Y., & Tadmor, Y. (2003). Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf020792b
  • 67. Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.04.038
  • 68. World Health Organisation. (n.d.). Retrieved February 6, 2021, from https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  • 69. Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., & Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. Journal of Pharmacology and Experimental Therapeutics.
  • 70. Yang, R. Y., Lin, S., & Kuo, G. (2008). Content and distribution of flavonoids among 91 edible plant species. Asia Pacific Journal of Clinical Nutrition. https://doi.org/10.6133/apjcn.2008.17.s1.66
  • 71. Yang, S. F., Yang, W. E., Chang, H. R., Chu, S. C., & Hsieh, Y. S. (2008). Luteolin induces apoptosis in oral squamous cancer cells. Journal of Dental Research. https://doi.org/10.1177/154405910808700413
  • 72. Yoshikawa, T., Hill, T., Li, K., Peters, C. J., & Tseng, C.-T. K. (2009). Severe Acute Respiratory Syndrome (SARS) Coronavirus-Induced Lung Epithelial Cytokines Exacerbate SARS Pathogenesis by Modulating Intrinsic Functions of Monocyte-Derived Macrophages and Dendritic Cells. Journal of Virology. https://doi.org/10.1128/jvi.01792-08
  • 73. Young, J. E., Zhao, X., Carey, E. E., Welti, R., Yang, S. S., & Wang, W. (2005). Phytochemical phenolics in organically grown vegetables. Molecular Nutrition and Food Research. https://doi.org/10.1002/mnfr.200500080
  • 74. Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 2(xxxx), 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • 75. Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical Immunology, 108427. https://doi.org/10.1016/j.clim.2020.108427
  • 76. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. https://doi.org/10.1016/S0140-6736(20)30566-3
  • 77. Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., qi, Y., … Wei, H. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review. https://doi.org/10.1093/nsr/nwaa041
  • 78. Zhu, J., Van de Ven, W. J. M., Verbiest, T., Koeckelberghs, G., Chen, C., Cui, Y., & Vermorken, A. J. M. (2013). Polyphenols Can Inhibit Furin In Vitro As A Result of the Reactivity of their Auto-oxidation Products to Proteins. Current Medicinal Chemistry. https://doi.org/10.2174/0929867311320060009
  • 79. Zhu, L., Chen, J., Tan, J., Liu, X., & Wang, B. (2017). Flavonoids from Agrimonia pilosa Ledeb: Free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. Molecules. https://doi.org/10.3390/molecules22030195
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Tartışma Makalesi
Yazarlar

Fatime Betül Üzer 0000-0002-5893-4952

Yayımlanma Tarihi 24 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 3

Kaynak Göster

APA Üzer, F. B. (2021). Luteolin Molekülü Covid-19 ile Mücadelede Bir Seçenek Olabilir mi?. Bütünleyici Ve Anadolu Tıbbı Dergisi, 2(3), 78-89. https://doi.org/10.53445/batd.925584

Cited By


COVID-19 Pandemisine Etki Potansiyeli Olan Tıbbi Bitkiler Üzerine Bir Derleme
Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi
https://doi.org/10.31020/mutftd.1384133
Bütünleyici ve Anadolu Tıbbı Dergisi

Journal of Integrative and Anatolian Medicine




by-nc-nd.png