Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling the effect of fully submerged plant field on open channel flow velocities using flow-3d

Yıl 2022, , 757 - 769, 08.07.2022
https://doi.org/10.25092/baunfbed.1066999

Öz

In this study, an experimental study examining the effect of submerged plants on open channel flows was modeled using FLOW-3D. Experimental results and numerical model results were compared. For modelling, the data of the experiment performed by Yılmazer et al. [10] were used.

Kaynakça

  • Fonseca, M.S., Kenworthy, W.J., Effect of current on photosynthesis and distribution of seagrasses, Aquatic Botany, 27, 59-78, (1987).
  • Nepf, H.M., Flow and transport in regions with aquatic vegetation, Annual Review Fluid Mechanics, 44, No.1, 123-142, (2012).
  • Altun, Ö., Bitki örtüsü içeren bileşik kesitli kanallarda kapasite tayini yaklaşımlarının model deneylerine göre irdelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, (2007).
  • Plew, D.R., Spiegel, R.H., Stevens, C.L., Nokes, R.I., Davidson, M.J., Strafied flow interactions with a suspended canopy, Environmental Fluid Mechanics,6, 519-539, (2006).
  • Huai,W., Hu, Y., Zeng, Y., Han, J., Velocity distribution for open channel flows with suspended vegetation, Advances in Water Resources, 49, 56-61, (2012).
  • Plew, D.R., Depth averaged drag coeffiient for modeling flow through suspended canopies, Journal of Hydraulic Engineering, 137(2), 234-247, (2011).
  • Hartshorn, N., Marimon, Z., Xuan, Z.M., Chang, N.B., Wanielista, M.P., Effect of floating treatment wetlands on control of nutrients in three stormwater wet detention ponds, Journal of Hydraulic Engineering,21,8, (2016).
  • Wu, H., Hao, B., Cai, Y., Liu, G., Xing, W., Effects of submerged vegetation on sediment nitrogen-cycling bacterial communities in Honghu Lake (China), Science of the total environment, 755, 1, 142541, (2021).
  • Yao, L., Chen, C., Liu, G., Liu, W., Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in eutrophi lake, Sience of the total environment, 616-617, 899-907, (2018).
  • Yılmazer, D., Ozan, A.Y., Cihan, K., Flow characteristics in the wake region of a finite-length vegetation patch in a partly vegetated channel, Water, 10, 4, 459, (2018).
  • Ozan, A.Y., Yılmazer, D., Near wake flow structure of a suspended cylindrical canopy patch, Water, 12, 84, (2020).
  • Kubrak, E., Kubrak, J., Rowinski, P.M., Vertical velocity distribution through and above submerged, flexible vegetation, Hydrological Sciences-Journal-des Sciences Hydrologique, 53,4, (2008)..
  • Akgül, M.A., Yılmazer, D., Oğuz, E., Kabdaşlı, M.S., Yağcı, O., The effect of an emergent vegetation (i.e. Phragmistes Australis) on wave attenuation and wave kinematics, Journal of Coastal Research, 65(10065),147-152, (2013).
  • Mendez, F.J., Losada, I.J., An emprical model to estimate the propagation of random breaking and non-breaking waves over vegation field, Coastal Engineering, 51, 103-118, (2004).
  • Möller, I., Quantifying saltmarsh vegetation and its effects on wave height dissipation: results from a UK east coast saltmarsh, estuarine, Coastal and Shelf Science, 69,337-351, (2006).
  • Myrhaug, D., Holmedal, L.E., Ong, M.C., Non-lineer random wave induced drag force on a vegetation field, Coastal Engineering, 56,371-376, (2009).
  • Rosman, J.H., Koseff, J.R., Monismith, S.G., Grover, J., A fıeld investigation into the effects of a kelp forest (Macrocytis Pyrifera) on coastal hydrodynamics on transport, Journal of Geophysical Research, 112, C02016, (2007).
  • Knutson, P.L., Brochu, R.A., Seelig, W.N. et al. Wave damping inSpartina alterniflora marshes. Wetlands 2, 87–104 (1982).
  • Bradley, K., Houser, C., Relative velocity of seagrass blades: Implications for wave attenuation in low energy environments, Journal of Geophysical Research Earth Surface, 114(1),1-13, (2009).
  • Ghisalberti, M., Nepf, H.M., The limited growth of vegetated shear layers, Water Resources Research, 4, 40, W07502, (2004).
  • Ghisalberti, M., Nepf, H., The structure of the shear layer in flow over rigid and flexible canopies, Environmental Fluid Mechanics, 6, 277-301, (2006).
  • Zhao, F., Huai, W., Li, D., Numerical modeling of open channel flow with suspended canopy , Advanced Water Resources, 105, 132-143, (2017).
  • Lu, J., Dai, H.C., Numerical modeling of pollution transport in flexible vegetation, Applied Mathematical Modelling, 64, 93-105, (2018).
  • Anjum, N., Tanaka, N., Numerical modeling of the turbulent flow structure through vertically double layer vegetation, Journal of Japan Society of Civil Engineers Ser. B1(Hydraulic Engineering), 75, 2, I_487-I_492, (2019).
  • Hemavathi, S., Manjula, R., Numerical modeling for wave attenuation by coastal vegetation using flow-3d, International Journal of Recent Techonology and Engineering (IJRTE), 7, 65, (2019).
  • Kubrak, E., Kubrak, J. And Rowınskı, P.M., Vertical velocity distributions through and above submerged, flexible vegetation., Hydrological Sciences– Journal–des Sciences Hydrologiques, 53, 4, (2008).
  • Yiping Li, Ying Wang, Desmond Ofosu Anim, Chunyan Tang, Wei Du, Lixiao Ni, Zhongbo Yu, Kurnud Acharya, Flow characteristics in different densities of submerged flexible vegetation from an open channel flume study of artificial plants, Geomorphology 204, 314-324, (2014).
  • Beihan Jiang, Kejun Yang, Shuyou Cao, An analytical model for the distributions of velocity and discharge in compound channels with submerged vegetation, Plos One, (2015).
  • Dorcheh, S. A. M., Effect Of Rigid Vegetation On The Velocity, Turbulence and Wave Structure in Open Channel Flows., PhD Thesis, Cardiff University., (2007).
  • Birol ATAY, Ana Yatakta ve Taşkın Yatağında Bitki Örtüsü Bulunan Açık Kanal Akımlarının Sayısal Model ile İncelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2016).
  • Selcan Sovukluk, Önder Koçyiğit, Bahadır Alyavuz, Akarsu Yatağındaki Bitki Örtüsünün Akım Şartlarına Etkisinin Sayısal Yöntemle İncelenmesi, 4. Su Yapıları Sempozyumu. 361-370, (2015).
  • Flow 3D User Manual Release 11.0.3, Flow Science, Inc. (2014).
  • Hirt, C. W., ve Nichols, B. D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, 39, 201–225, (1981).
  • White, B.L., ve Nepf, H.M., Shear instability and coherent structures in shallow flow adjacent to a porous layer, Journal of Fluid Mechanics,593, 1-32, (2007).
  • Nepf, H.M., ve Vivoni, E., R., Flow structure in dept-limited, vegetated flow, Journal of Geophysical Research, 105(C12), 28,547-28,557, (2000).

Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi

Yıl 2022, , 757 - 769, 08.07.2022
https://doi.org/10.25092/baunfbed.1066999

Öz

Bu çalışmada, deneysel olarak yapılan tam batmış bitkilerin açık kanal akımlarına olan etkisinin incelendiği bir çalışma, FLOW-3D ile modellenmiştir. Deney sonuçları ve sayısal model sonuçları karşılaştırılmıştır. Modellemede Yılmazer ve ark. [10] tarafından gerçekleştirilen deneye ait veriler kullanılmıştır.

Kaynakça

  • Fonseca, M.S., Kenworthy, W.J., Effect of current on photosynthesis and distribution of seagrasses, Aquatic Botany, 27, 59-78, (1987).
  • Nepf, H.M., Flow and transport in regions with aquatic vegetation, Annual Review Fluid Mechanics, 44, No.1, 123-142, (2012).
  • Altun, Ö., Bitki örtüsü içeren bileşik kesitli kanallarda kapasite tayini yaklaşımlarının model deneylerine göre irdelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, (2007).
  • Plew, D.R., Spiegel, R.H., Stevens, C.L., Nokes, R.I., Davidson, M.J., Strafied flow interactions with a suspended canopy, Environmental Fluid Mechanics,6, 519-539, (2006).
  • Huai,W., Hu, Y., Zeng, Y., Han, J., Velocity distribution for open channel flows with suspended vegetation, Advances in Water Resources, 49, 56-61, (2012).
  • Plew, D.R., Depth averaged drag coeffiient for modeling flow through suspended canopies, Journal of Hydraulic Engineering, 137(2), 234-247, (2011).
  • Hartshorn, N., Marimon, Z., Xuan, Z.M., Chang, N.B., Wanielista, M.P., Effect of floating treatment wetlands on control of nutrients in three stormwater wet detention ponds, Journal of Hydraulic Engineering,21,8, (2016).
  • Wu, H., Hao, B., Cai, Y., Liu, G., Xing, W., Effects of submerged vegetation on sediment nitrogen-cycling bacterial communities in Honghu Lake (China), Science of the total environment, 755, 1, 142541, (2021).
  • Yao, L., Chen, C., Liu, G., Liu, W., Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in eutrophi lake, Sience of the total environment, 616-617, 899-907, (2018).
  • Yılmazer, D., Ozan, A.Y., Cihan, K., Flow characteristics in the wake region of a finite-length vegetation patch in a partly vegetated channel, Water, 10, 4, 459, (2018).
  • Ozan, A.Y., Yılmazer, D., Near wake flow structure of a suspended cylindrical canopy patch, Water, 12, 84, (2020).
  • Kubrak, E., Kubrak, J., Rowinski, P.M., Vertical velocity distribution through and above submerged, flexible vegetation, Hydrological Sciences-Journal-des Sciences Hydrologique, 53,4, (2008)..
  • Akgül, M.A., Yılmazer, D., Oğuz, E., Kabdaşlı, M.S., Yağcı, O., The effect of an emergent vegetation (i.e. Phragmistes Australis) on wave attenuation and wave kinematics, Journal of Coastal Research, 65(10065),147-152, (2013).
  • Mendez, F.J., Losada, I.J., An emprical model to estimate the propagation of random breaking and non-breaking waves over vegation field, Coastal Engineering, 51, 103-118, (2004).
  • Möller, I., Quantifying saltmarsh vegetation and its effects on wave height dissipation: results from a UK east coast saltmarsh, estuarine, Coastal and Shelf Science, 69,337-351, (2006).
  • Myrhaug, D., Holmedal, L.E., Ong, M.C., Non-lineer random wave induced drag force on a vegetation field, Coastal Engineering, 56,371-376, (2009).
  • Rosman, J.H., Koseff, J.R., Monismith, S.G., Grover, J., A fıeld investigation into the effects of a kelp forest (Macrocytis Pyrifera) on coastal hydrodynamics on transport, Journal of Geophysical Research, 112, C02016, (2007).
  • Knutson, P.L., Brochu, R.A., Seelig, W.N. et al. Wave damping inSpartina alterniflora marshes. Wetlands 2, 87–104 (1982).
  • Bradley, K., Houser, C., Relative velocity of seagrass blades: Implications for wave attenuation in low energy environments, Journal of Geophysical Research Earth Surface, 114(1),1-13, (2009).
  • Ghisalberti, M., Nepf, H.M., The limited growth of vegetated shear layers, Water Resources Research, 4, 40, W07502, (2004).
  • Ghisalberti, M., Nepf, H., The structure of the shear layer in flow over rigid and flexible canopies, Environmental Fluid Mechanics, 6, 277-301, (2006).
  • Zhao, F., Huai, W., Li, D., Numerical modeling of open channel flow with suspended canopy , Advanced Water Resources, 105, 132-143, (2017).
  • Lu, J., Dai, H.C., Numerical modeling of pollution transport in flexible vegetation, Applied Mathematical Modelling, 64, 93-105, (2018).
  • Anjum, N., Tanaka, N., Numerical modeling of the turbulent flow structure through vertically double layer vegetation, Journal of Japan Society of Civil Engineers Ser. B1(Hydraulic Engineering), 75, 2, I_487-I_492, (2019).
  • Hemavathi, S., Manjula, R., Numerical modeling for wave attenuation by coastal vegetation using flow-3d, International Journal of Recent Techonology and Engineering (IJRTE), 7, 65, (2019).
  • Kubrak, E., Kubrak, J. And Rowınskı, P.M., Vertical velocity distributions through and above submerged, flexible vegetation., Hydrological Sciences– Journal–des Sciences Hydrologiques, 53, 4, (2008).
  • Yiping Li, Ying Wang, Desmond Ofosu Anim, Chunyan Tang, Wei Du, Lixiao Ni, Zhongbo Yu, Kurnud Acharya, Flow characteristics in different densities of submerged flexible vegetation from an open channel flume study of artificial plants, Geomorphology 204, 314-324, (2014).
  • Beihan Jiang, Kejun Yang, Shuyou Cao, An analytical model for the distributions of velocity and discharge in compound channels with submerged vegetation, Plos One, (2015).
  • Dorcheh, S. A. M., Effect Of Rigid Vegetation On The Velocity, Turbulence and Wave Structure in Open Channel Flows., PhD Thesis, Cardiff University., (2007).
  • Birol ATAY, Ana Yatakta ve Taşkın Yatağında Bitki Örtüsü Bulunan Açık Kanal Akımlarının Sayısal Model ile İncelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, (2016).
  • Selcan Sovukluk, Önder Koçyiğit, Bahadır Alyavuz, Akarsu Yatağındaki Bitki Örtüsünün Akım Şartlarına Etkisinin Sayısal Yöntemle İncelenmesi, 4. Su Yapıları Sempozyumu. 361-370, (2015).
  • Flow 3D User Manual Release 11.0.3, Flow Science, Inc. (2014).
  • Hirt, C. W., ve Nichols, B. D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, 39, 201–225, (1981).
  • White, B.L., ve Nepf, H.M., Shear instability and coherent structures in shallow flow adjacent to a porous layer, Journal of Fluid Mechanics,593, 1-32, (2007).
  • Nepf, H.M., ve Vivoni, E., R., Flow structure in dept-limited, vegetated flow, Journal of Geophysical Research, 105(C12), 28,547-28,557, (2000).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Didem Yılmazer

Gökhan Ayna Bu kişi benim 0000-0001-6047-1291

Ayşe Yüksel Ozan Bu kişi benim 0000-0003-1931-3528

Kubilay Cihan 0000-0002-0177-4345

Yayımlanma Tarihi 8 Temmuz 2022
Gönderilme Tarihi 2 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yılmazer, D., Ayna, G., Yüksel Ozan, A., Cihan, K. (2022). Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 757-769. https://doi.org/10.25092/baunfbed.1066999
AMA Yılmazer D, Ayna G, Yüksel Ozan A, Cihan K. Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2022;24(2):757-769. doi:10.25092/baunfbed.1066999
Chicago Yılmazer, Didem, Gökhan Ayna, Ayşe Yüksel Ozan, ve Kubilay Cihan. “Tam batmış Bitki tarlasının açık Kanal akım hızlarına Etkisinin Flow-3d Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Temmuz 2022): 757-69. https://doi.org/10.25092/baunfbed.1066999.
EndNote Yılmazer D, Ayna G, Yüksel Ozan A, Cihan K (01 Temmuz 2022) Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 757–769.
IEEE D. Yılmazer, G. Ayna, A. Yüksel Ozan, ve K. Cihan, “Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 24, sy. 2, ss. 757–769, 2022, doi: 10.25092/baunfbed.1066999.
ISNAD Yılmazer, Didem vd. “Tam batmış Bitki tarlasının açık Kanal akım hızlarına Etkisinin Flow-3d Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Temmuz 2022), 757-769. https://doi.org/10.25092/baunfbed.1066999.
JAMA Yılmazer D, Ayna G, Yüksel Ozan A, Cihan K. Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. 2022;24:757–769.
MLA Yılmazer, Didem vd. “Tam batmış Bitki tarlasının açık Kanal akım hızlarına Etkisinin Flow-3d Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2022, ss. 757-69, doi:10.25092/baunfbed.1066999.
Vancouver Yılmazer D, Ayna G, Yüksel Ozan A, Cihan K. Tam batmış bitki tarlasının açık kanal akım hızlarına etkisinin flow-3d ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. 2022;24(2):757-69.