Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling of atmospheric ammonia gas from livestock farms with AERMOD

Yıl 2024, , 19 - 28, 19.01.2024
https://doi.org/10.25092/baunfbed.1291384

Öz

Ammonia (NH3) emissions play a very important role in the formation of PM2.5 in the atmosphere, which can have significant effects on human health and the environment. In this study, hourly and daily dispersions of NH3 gas for the dairy were modeled by using the NH3 gas emission values emitted from the dairy facility. The emitted NH3 gas from the operation has been modeled using AERMOD (The American Meteorological Society/Environmental Protection Agency Regulatory Model). AERMOD is an USEPA-approved air quality dispersion model employed to determine the impact of air pollutants released from industrial areas as well as livestock facilities. The study area is a commercial dairy farm with approximately 2200 head of animals. As a result of modeling, the hourly immission has been estimated to be approximately 19 µg/m3 and the daily NH3 gas immission has been also estimated to be approximately 4 µg/m3 from the dairy to the nearest residential area. It has been determined that these estimated values are well below both the American and European air quality standards.

Kaynakça

  • Wyer, K.E., Kelleghan, D.B., Blanes-Vidal, V., Schauberger, G. ve Curran, T.P., Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health, Journal of Environmental Management, 323, 116285, (2022).
  • Giannakis, E., Kushta, J., Bruggeman, A., ve Lelieveld, J., Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations, Environ. Sci. Eur., 31 (1), 93, (2019).
  • Bauer, S.E., Tsigaridis, K., Miller, R., Significant atmospheric aerosol pollution caused by world food cultivation, Geophys. Res. Lett. 43, 5394–5400, (2016).
  • Behera, S., Sharma, M., Aneja, V.P., ve Balasubramanian, R., Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment, Sci. Total Environ., 408 (17), 3569–3575, (2010).
  • Han, X., Zhu, L., Liu, M., Song, Y., ve Zhang, M., Numerical analysis of the impact of agricultural emissions on PM2.5 in China using a high-resolution ammonia emissions inventory, Atmos. Chem. Phys. Discuss., 3, 1–31, (2020).
  • Behera, S. N., Sharma, M., Aneja, V. P., ve Balasubramanian, R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environmental Science And Pollution Research, 20(11), 8092–8131, (2013).
  • Rotz, C.A., Management to reduce nitrogen losses in animal production. Journal of Animal Science, 82(13), E119–E137, (2004).
  • Hristov, A.N., Hanigan, M., Cole, A., Todd, R., McAllister, T.A., Ndegwa, P., ve Rotz, A., Review: ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci., 9, 11–35, (2011).
  • Sutton, M.A., Erisman, J.W., Dentener, F., ve Moller, D., Ammonia in the environment: from ancient times to the present. Environ. Pollut., 156(3), 583–604, (2008).
  • Xue, J., Lau, A.K., ve Yu, J.Z., A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements, Atmos. Environ., 45(39),7081–7088, (2011).
  • Brunekreef, B., Harrison, R.M., Künzli, N., Querol, X., Sutton, M.A., Heederik, D.J.J., ve Sigsgaard, T., Reducing the health effect of particles from agriculture. Lancet Respir. Med., 3 (11), 831–832, (2015).
  • Thakrar, S.K., Balasubramanian, S., Adams, P.J., Azevedo, I.M.L., Muller, N.Z., Pandis, S. N., Polasky, S., , C. Arden Pope, I., Robinson, A.L., Apte, J.S., Tessum, C.W., Marshall, J.D., ve Hill, J.D., Reducing mortality from air pollution in the United States by targeting specific emission sources, Environ. Sci. Technol. Lett., 7 (9), 639–645, (2020).
  • Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution, J. Am. Med. Assoc., 287, 1132–1141, (2002).
  • Mutlu, A., Characterization of Ammonia Emissions From Ground Level Area Sources at Central Texas Dairies, Doktora Tezi, Texas A&M University, Biological and Agricultural Engineering, Texas, A.B.D., (2007).
  • United States Environmental Protection Agency (USEPA), User’s Guide for the AMS/EPA Regulatory Model (AERMOD), Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, (2018).
  • Wu, C., Yang, F., Brancher, M., Liu, J., Qu, C., Piringer, M., ve Schauberger, G., Determination of ammonia and hydrogen sulfide emissions from a commercial dairy farm with an exercise yard and the health-related impact for residents, Environ. Sci. Pollut. Res., 27, 37684–37698, (2020).
  • O'Shaughnessy, P. T., ve Altmaier, R., Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling, Atmos. Environ., 45(27), 4617–4625, (2011).
  • Huang, D., ve Guo, H., Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies, Science of The Total Environment, 690, 620-628, (2019).
  • Karageorgos, P., Latos, M., Mpasiakos, C., Chalarakis, E., Dimitrakakis, E., Daskalakis, C., Psillakis, E., Lazaridis, M., ve Kalogerakis, N., Characterization and dispersion modeling of odors from a piggery facility, J. Environ. Qual., 39 (6), 2170–2178, (2010).
  • Sarr, J.H., Goïta, K., ve Desmarais, C., Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec, J. Environ. Qual., 39 (6), 1975–1983, (2010).
  • Hayes, E.T., Curran, T.P., ve Dodd, V.A., A dispersion modelling approach to determine the odour impact of intensity poultry production units in Ireland, Bioresour. Technol., 97 (15), 1773–1779, (2006).
  • Xing, Y., Guo, H., Feddes, J., Yu, Z., Shewchuck, S., ve Predicala, B., Sensitivities of four air dispersion models to climatic parameters for swine odor dispersion, Trans. ASABE, 50 (3), 1007–1017, (2007).
  • Occupational Safety and Health Administration (OSHA), Ammonia, United States, Department of Labor, https://www.osha.gov/chemicaldata/623 , (14.04.2023)
  • The National Institute for Occupational Safety and Health (NIOSH), Pocket Guide to Chemical Hazards: Ammonia, U.S. Department of Health & Human Services, https://www.cdc.gov/niosh/npg/npgd0028.html , (14.04.2023)
  • Health and Safety Executive (HSE). Workplace Exposure Limits, 3rd Edition, http://www.hse.gov.uk/pubns/priced/eh40, (14.04.2023).
  • European Chemical Agency (ECHA), Ammonia, https://echa.europa.eu/substance-information/-/substanceinfo/100.028.760 , (14.04.2023).
  • Tahat, H., Gueneron, M., Pruitt, G., Ndegwa, P., ve Embertson, N., Regional Air Emissions Reduction from Dairy Operations Via Best Management Practices, American Journal of Environmental Protection., 10(6), 158-165, (2021).
  • Nannan Zhang,N., Bai, Z., Winiwarter, W., Ledgard, S., Luo, J., Liu, J., Guo, Y., ve Ma., L., Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China, Environmental Science & Technology, 53 (20), 11840-11848, (2019).
  • Hristov, A.N., Heyler, K., Schurman, E., Griswold, K., Topper, P., Hile, M., Ishler, V., Fabian-Wheeler, E., ve Dinh, S., CASE STUDY: Reducing dietary protein decreased the ammonia emitting potential of manure from commercial dairy farms, The Professional Animal Scientist, 31(1), 68-79, (2015).
  • Xu, P., Zhang, Y., Gong, W., Hou, X., Kroeze, C., Gao, W., ve Luan, S., An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution, Atmospheric Environment, 115, 141-148, (2015).

Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi

Yıl 2024, , 19 - 28, 19.01.2024
https://doi.org/10.25092/baunfbed.1291384

Öz

Amonyak (NH3) emisyonları, atmosferde insan sağlığı ve çevre üzerinde önemli etkileri olabilecek PM2.5 oluşumunda çok önemli bir rol oynamaktadır. Bu çalışmada, daha önce bir süt sığırcılığı tesisinden atmosfere yayılan NH3 gazı emisyon değerleri kullanılarak, işletme için NH3 gazının saatlik ve günlük dağılımları modellenmiştir. İşletmeden salınan NH3 gazı AERMOD (The American Meteorological Society/Environmental Protection Agency Regulatory Model) ile modellenmiştir. AERMOD günümüzde endüstriyel alanlarla birlikte hayvancılık tesislerinden salınan hava kirleticilerinin etkilerini belirlemek için kullanılan USEPA onaylı bir hava kalitesi dağılım modelidir. Çalışma alanı, yaklaşık 2200 baş hayvana sahip ticari bir süt sığırı işletmesidir. Modelleme sonucunda, işletmeden en yakın yerleşim alanına olan saatlik NH3 imisyon yükü yaklaşık 19 µg/m3 ve günlük NH3 gazı imisyon etkisi yaklaşık 4 µg/m3 olarak tahmin edilmiştir. Bu değerlerin hem Amerikan ve hem de Avrupa hava kalitesi yasal sınır değerlerinin oldukça altında kaldığı tespit edilmiştir.

Kaynakça

  • Wyer, K.E., Kelleghan, D.B., Blanes-Vidal, V., Schauberger, G. ve Curran, T.P., Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health, Journal of Environmental Management, 323, 116285, (2022).
  • Giannakis, E., Kushta, J., Bruggeman, A., ve Lelieveld, J., Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations, Environ. Sci. Eur., 31 (1), 93, (2019).
  • Bauer, S.E., Tsigaridis, K., Miller, R., Significant atmospheric aerosol pollution caused by world food cultivation, Geophys. Res. Lett. 43, 5394–5400, (2016).
  • Behera, S., Sharma, M., Aneja, V.P., ve Balasubramanian, R., Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment, Sci. Total Environ., 408 (17), 3569–3575, (2010).
  • Han, X., Zhu, L., Liu, M., Song, Y., ve Zhang, M., Numerical analysis of the impact of agricultural emissions on PM2.5 in China using a high-resolution ammonia emissions inventory, Atmos. Chem. Phys. Discuss., 3, 1–31, (2020).
  • Behera, S. N., Sharma, M., Aneja, V. P., ve Balasubramanian, R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environmental Science And Pollution Research, 20(11), 8092–8131, (2013).
  • Rotz, C.A., Management to reduce nitrogen losses in animal production. Journal of Animal Science, 82(13), E119–E137, (2004).
  • Hristov, A.N., Hanigan, M., Cole, A., Todd, R., McAllister, T.A., Ndegwa, P., ve Rotz, A., Review: ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci., 9, 11–35, (2011).
  • Sutton, M.A., Erisman, J.W., Dentener, F., ve Moller, D., Ammonia in the environment: from ancient times to the present. Environ. Pollut., 156(3), 583–604, (2008).
  • Xue, J., Lau, A.K., ve Yu, J.Z., A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements, Atmos. Environ., 45(39),7081–7088, (2011).
  • Brunekreef, B., Harrison, R.M., Künzli, N., Querol, X., Sutton, M.A., Heederik, D.J.J., ve Sigsgaard, T., Reducing the health effect of particles from agriculture. Lancet Respir. Med., 3 (11), 831–832, (2015).
  • Thakrar, S.K., Balasubramanian, S., Adams, P.J., Azevedo, I.M.L., Muller, N.Z., Pandis, S. N., Polasky, S., , C. Arden Pope, I., Robinson, A.L., Apte, J.S., Tessum, C.W., Marshall, J.D., ve Hill, J.D., Reducing mortality from air pollution in the United States by targeting specific emission sources, Environ. Sci. Technol. Lett., 7 (9), 639–645, (2020).
  • Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution, J. Am. Med. Assoc., 287, 1132–1141, (2002).
  • Mutlu, A., Characterization of Ammonia Emissions From Ground Level Area Sources at Central Texas Dairies, Doktora Tezi, Texas A&M University, Biological and Agricultural Engineering, Texas, A.B.D., (2007).
  • United States Environmental Protection Agency (USEPA), User’s Guide for the AMS/EPA Regulatory Model (AERMOD), Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, (2018).
  • Wu, C., Yang, F., Brancher, M., Liu, J., Qu, C., Piringer, M., ve Schauberger, G., Determination of ammonia and hydrogen sulfide emissions from a commercial dairy farm with an exercise yard and the health-related impact for residents, Environ. Sci. Pollut. Res., 27, 37684–37698, (2020).
  • O'Shaughnessy, P. T., ve Altmaier, R., Use of AERMOD to Determine a Hydrogen Sulfide Emission Factor for Swine Operations by Inverse Modeling, Atmos. Environ., 45(27), 4617–4625, (2011).
  • Huang, D., ve Guo, H., Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies, Science of The Total Environment, 690, 620-628, (2019).
  • Karageorgos, P., Latos, M., Mpasiakos, C., Chalarakis, E., Dimitrakakis, E., Daskalakis, C., Psillakis, E., Lazaridis, M., ve Kalogerakis, N., Characterization and dispersion modeling of odors from a piggery facility, J. Environ. Qual., 39 (6), 2170–2178, (2010).
  • Sarr, J.H., Goïta, K., ve Desmarais, C., Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec, J. Environ. Qual., 39 (6), 1975–1983, (2010).
  • Hayes, E.T., Curran, T.P., ve Dodd, V.A., A dispersion modelling approach to determine the odour impact of intensity poultry production units in Ireland, Bioresour. Technol., 97 (15), 1773–1779, (2006).
  • Xing, Y., Guo, H., Feddes, J., Yu, Z., Shewchuck, S., ve Predicala, B., Sensitivities of four air dispersion models to climatic parameters for swine odor dispersion, Trans. ASABE, 50 (3), 1007–1017, (2007).
  • Occupational Safety and Health Administration (OSHA), Ammonia, United States, Department of Labor, https://www.osha.gov/chemicaldata/623 , (14.04.2023)
  • The National Institute for Occupational Safety and Health (NIOSH), Pocket Guide to Chemical Hazards: Ammonia, U.S. Department of Health & Human Services, https://www.cdc.gov/niosh/npg/npgd0028.html , (14.04.2023)
  • Health and Safety Executive (HSE). Workplace Exposure Limits, 3rd Edition, http://www.hse.gov.uk/pubns/priced/eh40, (14.04.2023).
  • European Chemical Agency (ECHA), Ammonia, https://echa.europa.eu/substance-information/-/substanceinfo/100.028.760 , (14.04.2023).
  • Tahat, H., Gueneron, M., Pruitt, G., Ndegwa, P., ve Embertson, N., Regional Air Emissions Reduction from Dairy Operations Via Best Management Practices, American Journal of Environmental Protection., 10(6), 158-165, (2021).
  • Nannan Zhang,N., Bai, Z., Winiwarter, W., Ledgard, S., Luo, J., Liu, J., Guo, Y., ve Ma., L., Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China, Environmental Science & Technology, 53 (20), 11840-11848, (2019).
  • Hristov, A.N., Heyler, K., Schurman, E., Griswold, K., Topper, P., Hile, M., Ishler, V., Fabian-Wheeler, E., ve Dinh, S., CASE STUDY: Reducing dietary protein decreased the ammonia emitting potential of manure from commercial dairy farms, The Professional Animal Scientist, 31(1), 68-79, (2015).
  • Xu, P., Zhang, Y., Gong, W., Hou, X., Kroeze, C., Gao, W., ve Luan, S., An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution, Atmospheric Environment, 115, 141-148, (2015).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Atilla Mutlu 0000-0002-0777-0863

Erken Görünüm Tarihi 6 Ocak 2024
Yayımlanma Tarihi 19 Ocak 2024
Gönderilme Tarihi 2 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Mutlu, A. (2024). Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 19-28. https://doi.org/10.25092/baunfbed.1291384
AMA Mutlu A. Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. Ocak 2024;26(1):19-28. doi:10.25092/baunfbed.1291384
Chicago Mutlu, Atilla. “Hayvancılık işletmelerinde Atmosferik Amonyak gazının AERMOD Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Ocak 2024): 19-28. https://doi.org/10.25092/baunfbed.1291384.
EndNote Mutlu A (01 Ocak 2024) Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 19–28.
IEEE A. Mutlu, “Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 1, ss. 19–28, 2024, doi: 10.25092/baunfbed.1291384.
ISNAD Mutlu, Atilla. “Hayvancılık işletmelerinde Atmosferik Amonyak gazının AERMOD Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Ocak 2024), 19-28. https://doi.org/10.25092/baunfbed.1291384.
JAMA Mutlu A. Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. 2024;26:19–28.
MLA Mutlu, Atilla. “Hayvancılık işletmelerinde Atmosferik Amonyak gazının AERMOD Ile Modellenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2024, ss. 19-28, doi:10.25092/baunfbed.1291384.
Vancouver Mutlu A. Hayvancılık işletmelerinde atmosferik amonyak gazının AERMOD ile modellenmesi. BAUN Fen. Bil. Enst. Dergisi. 2024;26(1):19-28.