Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrojen üretimi için aktif karbon destekli kobalt katalizörü: sentez ve karakterizasyon

Yıl 2024, , 455 - 471, 15.07.2024
https://doi.org/10.25092/baunfbed.1297146

Öz

Bu çalışmada, sodyum borhidrürün (NaBH4) hidrolizi yoluyla hidrojen üretmek için aktif karbonla desteklenen bir kobalt katalizörü kullanıldı. İlk olarak, hidrotermal ön işlem ile MDF tozundan hidrokömür üretildi. Daha sonra, aktif karbon üretimi için ideal parametreler (aktifleştirici yüzdesi, aktivasyon süresi, fırınlanma süresi ve sıcaklık) belirlendi. Aktif karbon sentezi için en iyi koşullar iyot sayısı ölçümlerine göre %70 aktifleştirici oranı, 24 saat aktivasyon süresi, 45 dakika fırınlanma süresi ve 700 ⁰C sıcaklık olarak belirlendi. İyot sayısı optimum koşullarda 929 mg/g olarak ölçüldü., Kobalt katalizörü ile optimum koşullarda üretilmiş aktif karbon (destek maddesi) birleştirildi. Katalizörün yapısını değerlendirmek için DT/TGA, FT-IR, SEM ve EDX analizleri kullanıldı. Destekleyici malzeme oranı, NaOH konsantrasyonu, katalizör miktarı ve NaBH4 konsantrasyonu, katalizör sentezinde incelenen değişkenlerdir. Katalizör sentezi için optimum parametreler, %70 destek malzemesi, %5 NaOH, 40 mg katalizör ve %2 NaBH4 konsantrasyonu olarak belirlendi. Bu koşullarda sentezlenen katalizör ile hidrojen üretim hızı 8592.8 ml/g.dk olarak hesaplandı. Farklı sıcaklıklarda gerçekleştirilen hidroliz reaksiyonları sonucunda reaksiyonun n. dereceden ve aktivasyon enerjisinin de 31.19 kJ/mol olduğu belirlendi. Altıncı kullanımdan sonra bile katalizör aktivitesi tekrar tekrar test edildiğinde %100 verim elde edildi.

Kaynakça

  • Arsad, A. Z., Hannan, M. A., Al-Shetwi, A. Q., Mansur, M., Muttaqi, K. M., Dong, Z. Y. and Blaabjerg, F., Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions, International Journal of Hydrogen Energy, 47, 17285-17312, (2020).
  • İzgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö. and Onat, E., Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres, International Journal of Hydrogen Energy, 45, 55, 30415-30430, (2020).
  • İzgi, M. S., Şahin, Ö., Onat, E. and Saka, C., Epoxy-activated acrylic particulate polymer-supported Co–Fe–Ru–B catalyst to produce H2 from hydrolysis of NH3BH3, International Journal of Hydrogen Energy, 45, 43, 22638-22648, (2020).
  • Boretti, A., Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia, International Journal of Hydrogen Energy, 45, 7, 3899-3904, (2020).
  • Kim, K. C. & Sholl, D. S., Crystal structures and thermodynamic investigations of LiK (BH4)2, KBH4, and NaBH4 from first-principles calculations, The Journal of Physical Chemistry C, 114, 1, 678-686, (2010).
  • Dincer, İ., Technical, environmental and energetic aspects of hydrogen energy systems, International Journal of Hydrogen Energy, 27, 3, 265-285, (2002).
  • Onat, E., Aslan, M. and İzgi, M. S., Kobalt bazli bimetalik nanokatalizörün potasyum borhidrür hidroliz tepkimesi üzerindeki katalitik etkisinin incelenmesi, Konya Mühendislik Bilimleri Dergisi, 9, 200-212, (2021).
  • Jain, I. P., Jain, P. and Jain, A., Novel hydrogen storage materials: A review of lightweight complex hydrides, Journal of Alloys and Compounds, 503, 2, 303-339, (2010).
  • Şahin, Ö., İzgi, M. S., Onat, E. and Saka, C., Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst, International Journal of Hydrogen Energy, 41, 4, 2539-2546, (2016).
  • Muir, S. S. & Yao, X., Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems, International Journal of Hydrogen Energy, 36, 10, 5983-5997, (2011).
  • Török, B., Schäfer, C. and Kokel, A., Heterogeneous Catalysis in Sustainable Synthesis, eBook ISBN: 9780128178263, 23-80, (2022).
  • Armarego, W. L. F., Purification of Laboratory Chemicals (Ninth edition), Butterworth-Heinemann, eBook ISBN: 978-0-323-90968-6, 241-363, (2022).
  • Taştaban, M., Katalitik ıslak peroksit oksidasyonu yoluyla azo boyar madde gideriminde kullanılmak üzere bentonit destekli katalizör sentezi ve karakterizasyonu, Doktora Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2019).
  • Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D. and Regalbuto, J. R., A Review of Preparation Methods for Supported Metal Catalysts, Advances in Catalysis, 61, 1-35, (2017).
  • Onat, E., Horoz, S., Şahin, Ö. and İzgi, M. S., Revolutionary carbon quantum dot supported-Co catalyst for record-breaking hydrogen production rate, Journal of the Australian Ceramic Society, 1-10, (2024).
  • Onat, E., Izgi, M. S., Şahin, Ö. and Saka, C., Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment, International Journal of Hydrogen Energy, 51, 362-375, (2024).
  • İzgi̇, M. S., Onat, E., Şahi̇n, Ö. and Saka, C., Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment, International Journal of Hydrogen Energy, 51, 180-192, (2024).
  • Onat, E., İzgi, M. S., Şahin, Ö. and Saka, C., Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism, Diamond and Related Materials, 141, 110704, (2024).
  • Hagen, J., Industrial catalysis: a practical approach, John Wiley & Sons, eBook ISBN: 978-3-527-33165-9, (2015).
  • Yaslı, M.A., Antep fıstığı kavlatma tesisi atıklarından hidrotermal yöntemle aktif karbon üretimi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, (2005).
  • White, R.J., Luque, R., Budarin, V. L., Clark, J. H., Macquarrie, D. J., Supported metal nanoparticles on porous materials. Methods and applications, Chemical Society Reviews, 38, 2, 481-494, (2009).
  • Mahanim, S. M. A., Asma, I. W., Rafidah, J., Puad, E. and Shaharuddin, H., Production of activated carbon from industrial bamboo wastes, Journal of Tropical Forest Science, 417-424, (2011).
  • Le Van, K. and Thi, T. T. L., Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Progress in Natural Science: Materials International, 24, 3, 191-198, (2014).
  • Oliveira, A. V., Vilaça, R., Santos, C. N., Costa, V. and Menezes, R., Exploring the power of yeast to model aging and age-related neurodegenerative disorders, Biogerontology, 18, 1, 3-34, (2017).
  • Shin, D. Y., Sung, K. W. and Ahn, H. J., Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics, Applied Surface Science, 478, 499-504, (2019).
  • Nakamoto, K., Infrared spectra of Inorganic and Coordination Compounds, 2nd ed. New York, John Wiley and Sons, (1963).
  • Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q. and Wang, W., Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism, Scientific Reports,7, 12437, (2017).
  • Onat, E., Şahin, Ö., Izgi, M. S. and Horoz, S., An efficient synergistic Co@ CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3, Journal of Materials Science: Materials in Electronics, 32, 27251-27259, (2021).
  • İzgi, M. S., Effect of microwave irritated Co-B-Cr catalyst on the hydrolysis of sodium borohydride, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 17, 2590-2597, (2016).
  • Li, Z., Li, H., Wang, L., Liu, T., Zhang, T., Wang, G. and Xie, G., Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni–Co–P/γ-Al2O3), İnternational journal of hydrogen energy, 39, 27, 14935-14941, (2014).
  • Demirci, U. B., Akdim, O., Hannauer, J., Chamoun, R. and Miele, P., Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective, Science China Chemistry, 53, 1870-1879, (2010).
  • Onat, E., & Ekinci, S., A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal, Diamond and Related Materials, 110848, (2024).
  • İzgi, M. S., Şahin, Ö., Onat, E. and Horoz, S., Metanolde sentezlenen Co-B katalizörün sodyum hidrolizi üzerine etkisi, Journal of the Institute of Science and Technology, 7, 4, 151-160, (2017).
  • Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y. and Yu, H. K., Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation, International Journal of Hydrogen Energy, 44, 5, 2943-2950, (2019).

Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization

Yıl 2024, , 455 - 471, 15.07.2024
https://doi.org/10.25092/baunfbed.1297146

Öz

In this work, a cobalt catalyst supported by activated carbon was used to produce hydrogen through the hydrolysis of sodium borohydride (NaBH4). First, hydrochar was produced from MDF powder by hydrothermal pretreatment. Then, ideal parameters (activator percentage, activation time, baking time, and temperature) for activated carbon production were determined. The best conditions for the synthesis of activated carbon were found to be a 70% activator rate, 24 hours of activation time, 45 minutes of baking time, and 700 ⁰C temperature, according to iodine number measurements. The iodine number was measured as 929 mg/g under optimum conditions. Activated carbon (as a support) produced under optimum conditions was combined with the cobalt catalyst. DT/TGA, FT-IR, SEM, and EDX analyses were used to evaluate the catalyst's structure. Supporting material ratio, NaOH concentration, catalyst amount, and NaBH4 concentration are the variables studied in catalyst synthesis. The trials led to the identification of the optimal catalyst parameters as being 70% support material, 5% NaOH, 40 mg catalyst, and 2% NaBH4 concentration. The hydrogen production rate with the catalyst synthesized in these conditions was determined as 8592.8 ml/g.min. As a result of the hydrolysis reactions carried out at different temperatures, it was determined that the reaction was n. order and the reaction activation energy was 31.19 kJ/mol. Even after the sixth use, 100% efficiency was attained when the catalyst activity was tested repeatedly.

Kaynakça

  • Arsad, A. Z., Hannan, M. A., Al-Shetwi, A. Q., Mansur, M., Muttaqi, K. M., Dong, Z. Y. and Blaabjerg, F., Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions, International Journal of Hydrogen Energy, 47, 17285-17312, (2020).
  • İzgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö. and Onat, E., Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2–NH2 core-shell microspheres, International Journal of Hydrogen Energy, 45, 55, 30415-30430, (2020).
  • İzgi, M. S., Şahin, Ö., Onat, E. and Saka, C., Epoxy-activated acrylic particulate polymer-supported Co–Fe–Ru–B catalyst to produce H2 from hydrolysis of NH3BH3, International Journal of Hydrogen Energy, 45, 43, 22638-22648, (2020).
  • Boretti, A., Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia, International Journal of Hydrogen Energy, 45, 7, 3899-3904, (2020).
  • Kim, K. C. & Sholl, D. S., Crystal structures and thermodynamic investigations of LiK (BH4)2, KBH4, and NaBH4 from first-principles calculations, The Journal of Physical Chemistry C, 114, 1, 678-686, (2010).
  • Dincer, İ., Technical, environmental and energetic aspects of hydrogen energy systems, International Journal of Hydrogen Energy, 27, 3, 265-285, (2002).
  • Onat, E., Aslan, M. and İzgi, M. S., Kobalt bazli bimetalik nanokatalizörün potasyum borhidrür hidroliz tepkimesi üzerindeki katalitik etkisinin incelenmesi, Konya Mühendislik Bilimleri Dergisi, 9, 200-212, (2021).
  • Jain, I. P., Jain, P. and Jain, A., Novel hydrogen storage materials: A review of lightweight complex hydrides, Journal of Alloys and Compounds, 503, 2, 303-339, (2010).
  • Şahin, Ö., İzgi, M. S., Onat, E. and Saka, C., Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst, International Journal of Hydrogen Energy, 41, 4, 2539-2546, (2016).
  • Muir, S. S. & Yao, X., Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems, International Journal of Hydrogen Energy, 36, 10, 5983-5997, (2011).
  • Török, B., Schäfer, C. and Kokel, A., Heterogeneous Catalysis in Sustainable Synthesis, eBook ISBN: 9780128178263, 23-80, (2022).
  • Armarego, W. L. F., Purification of Laboratory Chemicals (Ninth edition), Butterworth-Heinemann, eBook ISBN: 978-0-323-90968-6, 241-363, (2022).
  • Taştaban, M., Katalitik ıslak peroksit oksidasyonu yoluyla azo boyar madde gideriminde kullanılmak üzere bentonit destekli katalizör sentezi ve karakterizasyonu, Doktora Tezi, Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, (2019).
  • Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D. and Regalbuto, J. R., A Review of Preparation Methods for Supported Metal Catalysts, Advances in Catalysis, 61, 1-35, (2017).
  • Onat, E., Horoz, S., Şahin, Ö. and İzgi, M. S., Revolutionary carbon quantum dot supported-Co catalyst for record-breaking hydrogen production rate, Journal of the Australian Ceramic Society, 1-10, (2024).
  • Onat, E., Izgi, M. S., Şahin, Ö. and Saka, C., Highly active hydrogen production from hydrolysis of potassium borohydride by caffeine carbon quantum dot-supported cobalt catalyst in ethanol solvent by hydrothermal treatment, International Journal of Hydrogen Energy, 51, 362-375, (2024).
  • İzgi̇, M. S., Onat, E., Şahi̇n, Ö. and Saka, C., Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment, International Journal of Hydrogen Energy, 51, 180-192, (2024).
  • Onat, E., İzgi, M. S., Şahin, Ö. and Saka, C., Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism, Diamond and Related Materials, 141, 110704, (2024).
  • Hagen, J., Industrial catalysis: a practical approach, John Wiley & Sons, eBook ISBN: 978-3-527-33165-9, (2015).
  • Yaslı, M.A., Antep fıstığı kavlatma tesisi atıklarından hidrotermal yöntemle aktif karbon üretimi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, (2005).
  • White, R.J., Luque, R., Budarin, V. L., Clark, J. H., Macquarrie, D. J., Supported metal nanoparticles on porous materials. Methods and applications, Chemical Society Reviews, 38, 2, 481-494, (2009).
  • Mahanim, S. M. A., Asma, I. W., Rafidah, J., Puad, E. and Shaharuddin, H., Production of activated carbon from industrial bamboo wastes, Journal of Tropical Forest Science, 417-424, (2011).
  • Le Van, K. and Thi, T. T. L., Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Progress in Natural Science: Materials International, 24, 3, 191-198, (2014).
  • Oliveira, A. V., Vilaça, R., Santos, C. N., Costa, V. and Menezes, R., Exploring the power of yeast to model aging and age-related neurodegenerative disorders, Biogerontology, 18, 1, 3-34, (2017).
  • Shin, D. Y., Sung, K. W. and Ahn, H. J., Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics, Applied Surface Science, 478, 499-504, (2019).
  • Nakamoto, K., Infrared spectra of Inorganic and Coordination Compounds, 2nd ed. New York, John Wiley and Sons, (1963).
  • Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q. and Wang, W., Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism, Scientific Reports,7, 12437, (2017).
  • Onat, E., Şahin, Ö., Izgi, M. S. and Horoz, S., An efficient synergistic Co@ CQDs catalyst for hydrogen production from the hydrolysis of NH3BH3, Journal of Materials Science: Materials in Electronics, 32, 27251-27259, (2021).
  • İzgi, M. S., Effect of microwave irritated Co-B-Cr catalyst on the hydrolysis of sodium borohydride, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 17, 2590-2597, (2016).
  • Li, Z., Li, H., Wang, L., Liu, T., Zhang, T., Wang, G. and Xie, G., Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni–Co–P/γ-Al2O3), İnternational journal of hydrogen energy, 39, 27, 14935-14941, (2014).
  • Demirci, U. B., Akdim, O., Hannauer, J., Chamoun, R. and Miele, P., Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective, Science China Chemistry, 53, 1870-1879, (2010).
  • Onat, E., & Ekinci, S., A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal, Diamond and Related Materials, 110848, (2024).
  • İzgi, M. S., Şahin, Ö., Onat, E. and Horoz, S., Metanolde sentezlenen Co-B katalizörün sodyum hidrolizi üzerine etkisi, Journal of the Institute of Science and Technology, 7, 4, 151-160, (2017).
  • Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y. and Yu, H. K., Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation, International Journal of Hydrogen Energy, 44, 5, 2943-2950, (2019).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Selma Ekinci 0000-0002-7835-4832

Erhan Onat 0000-0003-1638-0151

Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 15 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ekinci, S., & Onat, E. (2024). Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 455-471. https://doi.org/10.25092/baunfbed.1297146
AMA Ekinci S, Onat E. Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2024;26(2):455-471. doi:10.25092/baunfbed.1297146
Chicago Ekinci, Selma, ve Erhan Onat. “Activated Carbon Assisted Cobalt Catalyst for Hydrogen Production: Synthesis and Characterization”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 2 (Temmuz 2024): 455-71. https://doi.org/10.25092/baunfbed.1297146.
EndNote Ekinci S, Onat E (01 Temmuz 2024) Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 455–471.
IEEE S. Ekinci ve E. Onat, “Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 2, ss. 455–471, 2024, doi: 10.25092/baunfbed.1297146.
ISNAD Ekinci, Selma - Onat, Erhan. “Activated Carbon Assisted Cobalt Catalyst for Hydrogen Production: Synthesis and Characterization”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (Temmuz 2024), 455-471. https://doi.org/10.25092/baunfbed.1297146.
JAMA Ekinci S, Onat E. Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. BAUN Fen. Bil. Enst. Dergisi. 2024;26:455–471.
MLA Ekinci, Selma ve Erhan Onat. “Activated Carbon Assisted Cobalt Catalyst for Hydrogen Production: Synthesis and Characterization”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 2, 2024, ss. 455-71, doi:10.25092/baunfbed.1297146.
Vancouver Ekinci S, Onat E. Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):455-71.