Derleme
BibTex RIS Kaynak Göster

Toksik organik kirleticilerin mekanokimyasal parçalanması

Yıl 2024, , 635 - 649, 15.07.2024
https://doi.org/10.25092/baunfbed.1329657

Öz

Günümüzde birçoğu termal ve termal olmayan bertaraf teknolojilerine ilişkin bazı yaklaşım ve yöntemler, toksik organik kirleticilerin parçalanması amacıyla önerilmektedir. Ancak hem yakma teknolojileri hem de diğer yüksek sıcaklığa sahip bertaraf teknolojileri, yetersiz yönetimlerin sebep olabileceği ikincil kirlenmeler ve sıcaklığın sabit tutulması için işletimi oldukça pahalı olan fazla miktarda enerji ve ortam gereksinimi nedeniyle uzun süre kullanıma uygun değildir. Öte yandan, biyoremediasyon ve fitoremediasyon da dahil olmak üzere farklı bertaraf teknolojileri ise, bitki ve mikrobiyal aktivitelerin kullanımıyla ilişkili dezavantaj ve kısıtlamalara sahiptir. Bu bağlamda, organik kirleticilerin zararlı etkilerini azaltmak veya ortadan kaldırmak için alternatif teknolojilere ihtiyaç duyulmaktadır. Son yıllarda yapılan araştırmalar, mekanokimyasal parçalanmanın organik kirleticileri parçalayarak çevreci yaklaşımla solvent kullanılmaksızın çevresel problemleri ortadan kaldıran yüksek potansiyele sahip yenilikçi bir teknoloji olduğunu göstermiştir. Bu teknoloji saha ölçeğinde çok çeşitli kirleticilere uygulanabilmektedir. Bu nedenle bu derlemede, (i) toksik organik kirleticilerin parçalanması için mekanokimyasal parçalanmanın etkinliği, kabul edilebilirliği, kullanılabilirliği ve güvenilebilirliğinin araştırılması amaçlanmıştır. Sonuç olarak, bu derleme atık yönetiminde mekanokimya uygulamaları ve ilgili mekanizmalar hakkında yol gösterici bir kaynak olacaktır.

Kaynakça

  • Fernández-Bertran, J. F., Mechanochemistry: An Overview, Pure and Applied Chemistry, 71, 4, 581-586, (1999).
  • Heinicke, G., Tribochemistry, Akademic-Verlag, Berlin, (1984).
  • Boldyrev, V.V. ve Tkácová, K., Mechanochemistry of solids: past, present, and prospects, Journal of Materials Synthesis and Processing, 8, 2-4, 121-132, (2000).
  • Wieczorek-Ciurowa, K. ve Gamrat, K., Mechanochemical syntheses as an example of green processes, Journal of Thermal Analysis and Calorimetry, 88, 213-217, (2007).
  • Lu, S., Huang, J., Peng, Z., Lia, X. ve Yan, J., Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations, Chemical Engineering Journal, 195, 62–68, (2012).
  • Mitchenko, S.A., Mechanochemistry in heterogeneous catalysis, Theoretical and Experimental Chemistry, 43, 4, 211-228, (2007).
  • Cagnetta, G., Robertson, J., Huang, J., Zhang, K. ve Yu, G., Mechanochemical destruction of halogenated organic pollutants: A critical review, Journal of Hazardous Materials, 313, 85-102, (2016).
  • Wei, Y., Yan, J., Lu, S. ve Li, X., Mechanochemical decomposition of pentachlorophenol by ball milling, Journal of Environmental Sciences, 21, 12, 1761–1768, (2009).
  • Wikström, E. ve Marklund, S., The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste, Chemosphere, 43, 2, 227-234, (2001).
  • Zinoviev, S., Fornasiero, P., Lodolo, A. ve Miertus, S., Non-combustion technologies for POPs destruction, Review and evaluation, International Centre for Science and Hich Technology of the United Nations Industrial Organisation (ICS-UNIDO), Trieste, (2007).
  • Rattley, M., Ambiguous bromine, Nature Chemistry, 4, 512, (2012).
  • Tange, L. ve Drohmann, D., Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment-thermal process, Polymer Degradation and Stability, 88, 1, 35-40, (2005).
  • Hollis, J.R., Plasma temperature incineration, Environmental Progress, 2, 1, 7, (1983).
  • Tomio, S. ve Masamitsa, T., Development of Fluidized Bed Gasification and Swirl-flow Melting Process for Municipal Solid Wastes, The University of Seoul Press, 1-10, (2002).
  • Ecke, H., Sakanakura, H. ve Matsuto, T., State-of-the-art treatment processes for municipal solid incineration residues in Japan, Waste Management and Research, 18, 1, 41-51, (2000).
  • Hagenmaier, H., Kraft, M. ve Brunner, H., Catalytic effects of fly ash from incineration facilities on the formation and decomposition of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans, Environmental Science and Technology, 21, 11, 1080-1084, (1987).
  • Tiernan, T.O., Wagel, D.J. ve VanNess, G.F., Treatment of complex chemical wastes with the base catalyzed decomposition (BCD) process, Organohalogen Compd., 8, 289-292, (1992).
  • Shi, W. ve Zhang, J., Photodegradation mechanism and its influential factors of PVC, China Synthetic Resin and Plastics, 23, 80-84, (2006).
  • Gao, J., Distribution, microbial effects and bioremediation of PCBs in typical polluted agricultural soils in the Yangtze River Delta, Ph.D., University of Zhejiang, China, (2005).
  • Zhang, T. ve Cheng, X.X., Progress of the research on persistent organic pollutants, Scitech Information Development Economy, 17, 206-208, (2007).
  • Rowlands, S.A., Hall, A.K., Mccormick, P.G., Street, R., Hart, R. J., Ebell, G.F. ve Donecker, P., Destruction of toxic materials, Nature, 367:223, (1993).
  • Zhang, Q.W., Matsumoto, H., Saito, F. ve Baron, M., Debromination of hexabromobenzene by its co-grinding with CaO, Chemosphere, 48, 787–793, (2002).
  • Zhang, K., Huang, J., Yu, G., Zhang, Q., Deng, S. ve Wang, B., Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling, Environmental Science and Technology, 47, 12, 6471–6477, (2013).
  • Nah, I.W., Hwang, K. ve Shul, Y., Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs), Chemosphere, 73, 1, 138–141, (2008).
  • Birke, V., Mattik, J., Runne, D., Benning, H.ve Zlatovic, D., Dechlorination of recalcitrant polychlorinated contaminants using ball milling. In: Proceedings of the NATO ARW on ecological risks associated with the destruction of chemical weapons, Luneburg, DE, 22–26 October. Vol. I: 111–127, (2003).
  • Zhang, K., Huang, J., Zhang, W., Yu, Y., Deng, S. ve Yu, G., Mechanochemical Degradation of Tetrabromobisphenol A: Performance, Products and Pathway, Journal Hazardous Materials, 243, 278-285, (2012).
  • Yu, Y., Huang, J., Zhang, W., Zhang, K., Deng, S. ve Yu, G., Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill, Chemosphere, 90, 5, 1729-1735, (2013).
  • Hu, S., Junya, K., Fumio, S., Shimme, K., Masuda, S. ve Inoue, T., Effect of additives on dechlorination of PVC by mechanochemical treatment, Journal of Material Cycles and Waste Management, 3, 1, 20–23, (2001).
  • Nomura, Y., Fujiwara, K., Terada, A., Nakai, S. ve Hosomi, M., Mechanochemical degradation of ϒ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO, Chemosphere, 86, 228-234, (2011).
  • Khoa, H.X., Bae, S., Bae, S., Kim, B., Kim, J.S., Planetary Ball Mill Process in Aspect of Milling Energy, Journal of Korean Metallurgy Institute, 21, 2, 155-164, (2014).
  • Leo, D. P., Pizzigallo, M. D. R., Ancona, V., Benedetto, F. D., Mesto, E., Schingaro, E. ve Ventruti, G., Mechanochemical degradation of pentachlorophenol onto birnessite, Journal of Hazardous Materials, 244-245, 303-310, (2013).
  • Lu, M., Cagnetta, G., Zhang, K. ve Huang, J., Mechanochemical mineralization of “very persistent” fluorocarbon surfactants ‒ 6:2 fluorotelomer sulfonate (6:2FTS) as an example, Nature, 7, 1-10, (2017).
  • Palaniandy, S., Impact of mechanochemical effect on chalcopyrite leaching, International Journal of Mineral Processing, 136, 56-65, (2015).
  • Burgio, N., Iasonna, A., Magini, M., Martelli, S. ve Padella, F., Mechanical Alloying of the Fe-Zr System. Correlation between Input Energy and End Products, Il Nuovo Cimento, 13, 4, 459-476, (1991).
  • Chattopadhyay, P. P., Manna, I., Talapatra, S. ve Pabi, S. L., A mathematical analysis of milling mechanics in a planetary ball mill, Materials Chemistry and Physics, 68 (1-3), 85-94, (2001).
  • Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. ve Uzarevic, K., Advancing mechanochemical synthesis by combining milling with different energy sources, Nature Review Chemistry, 7, 51–65, (2023).
  • Cagnetta, G., Huang, J., Wang, B., Deng, S., Yu, G., A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants, Chemical Engineering Journal, 291, 30-38, (2016).
  • Cagnetta, G., Liu, H., Zhang, K., Huang, J., Wang, B., Deng, S., Wang, Y. ve Yu, G., Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach, Nature, Scientific Reports, 6 (28394), 1-13, (2016).
  • Zhang, W., Huang, J., Xu, F., Deng, S., Zhu, W. ve Yu, G., Mechanochemical Destruction of Pentachloronitrobenzene with Reactive Iron Powder, Journal Hazardous Materials, 198, 275-281, (2011).
  • Zhang, W., Wang, H., Jun, H., Yu, M., Wang, F., Zhou, L., Yu, G., Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand, Chemical Engineering Journal, 239, 1, 185-191, (2014).
  • Ren, Y., Kang, S., Zhu, J., Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive, Journal of Material Cycles Waste Management, 17, 4, 607-615, (2015).
  • Zhang, T., Huang, J., Zhang, W., Yu, Y., Deng, S., Wang, B., Yu, G., Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe-Ni-SiO2, Journal of Hazardous Materials, 250-251, 175-180, (2013).
  • Mitoma, Y., Miyata, H., Egashira, N., Simion, A.M., Kakeda, M. ve Simion, C., Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent, Chemosphere, 83, 10, 1326-1330, (2011).
  • Wang, H., Huang, J., Zhang, S., Xu, Y., Zhang, K., Liu, K., Cao, Z., Yu, G., Deng, S. ve Wang, Y., Study of degradation mechanism of dechlorane plus by mechanochemical reaction with aluminum and quartz sand, Chemical Engineering Journal, 292, 98-104, (2016).
  • Mulas, G., Loiselle, S., Schiffini, L. ve Cocco, G., The mechanochemical self propagating reaction between hexachlorobenzene and calcium hydride, Journal of Solid State Chemistry, 129, 2, 263-270, (1997).
  • Hosomi, M., Nomura, Y. ve Zhou, S., Degradation of POPs Pesticides by Mechanochemical Treatment, China POPs Forum, (The 3rd National Symposium on Persistent Organic Pollutants), Beijing, (2008).
  • Hall, A. K., Harrowfield, J., Hart, R. J. ve Mccormick, P., Mechanochemical Reaction of DDT with Calcium Oxide, Environmental Science & Technology, 30, 12, 3401-3407, (1996).
  • Zhang, W., Huang, J., Yu, G., Deng, S. ve Zhu, W., Mechanochemical destruction of Dechlorane Plus with calcium oxide, Chemosphere, 81, 3, 345-350, (2010).
  • Nomura, Y., Aono, S., Arino, T., Yamamoto, T., Terada, A., Noma, Y. ve Hosomi, M., Degradation of polychlorinated naphthalene by mechanochemical Treatment, Chemosphere, 93, 11, 2657-2661, (2013).
  • Pelitli, V., Kurt, U. ve Canlı, O., Mechanochemical degradation of Tehnical Hexachlorocyclohexane with Calcium oxide, Journal of the Faculty of Engineering and Architecture of Gazi University, 34, 2, 961-973 (2019).
  • Pelitli, V. ve Kurt, U., Hexachlorocyclohexane (HCH): optimization of mechanochemical degradation process by CaO, Journal of Polytechnic, 24, 2, 439-452, (2021).
  • Pagola, S., Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View, Crystals, 13, 124, 3-33, (2023).
  • Rodygin, K. S., Ledovskaya, M. S., Voronin, V. V., Lotsman, K.A. ve Ananikov, V.P., Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability, Chemistry Europe, 43-52, (2021).
  • Cuccu, F., De Luca, L., Delogu, F., Colacino, E., Solin, N., Mocci, R. ve Porcheddu, A., Mechanochemistry: New Tools to Navigate the Uncharted Territory of Impossible reactions, ChemSusChem, 15, 1-41, (2022).
  • Non-combustion Technology for POPs Waste Destruction Replacing Incineration with Clean Technology, IPEN, Sweden, (2021).
  • Dong, D., Zhang, Y., shan, M., Yin, T., Wang, T., Wang, J., Gao, W., Application of mechanochemical technology for removal/solidification pollutant and preparation/recycling energy storage materials, Journal of Cleaner Production, 348, 131351, (2022).
  • Fantozzi, N., Volle, J.N., Porcheddu, A., Virieux, D., Garcia, F., Colacino, E., Green metrics in mechanochemistry, Chemical Society Reviews, 52, 6680, (2023).
  • Reynes, J.F., Isoni, V., Garcia, F., Tinkering with Mechanochemical Tools for Scale Up, Angewandte Chemie International Edition, 62, e2023008, (2023).
  • Kubicki, D. J., Prochowicz, D., Hofstetter, A., Saski, M., Yadav, P., Bi, D., Pellet, N., Lewiński, J., Zakeeruddin, S. M., Grätzel, M., Emsley, L., Journal of the American Chemical Society, 140, 9, 3345-3351, (2018).

Mechanochemical destruction of toxic organic pollutants

Yıl 2024, , 635 - 649, 15.07.2024
https://doi.org/10.25092/baunfbed.1329657

Öz

Today, several approaches and methods for the destruction of toxic organic pollutants have been proposed, most of which are thermal and athermal disposal technologies. However, incineration technologies and other high-temperature disposal systems are not suitable for long-term use. Burning at high temperatures demands more energy and rigorous conditions for temperature maintenance, making them more expensive to operate. Poor management may also lead to secondary pollution. On the other hand, athermal (non-incineration) disposal technologies, including bioremediation and phytoremediation, have disadvantages and limitations associated with the use of plant and microbial activities. In this context, there is a need for alternative technologies to mitigate or eliminate the harmful effects of organic pollutants. Recent research indicates that mechanochemical degradation is a highly promising technology for the destruction of organic pollutants. It avoids the use of solvents, making it a very eco-friendly process that eliminates potential environmental problems. This technology has the potential to be applied on a large scale to a wide variety of pollutants. Therefore, in this review, we aim to: (i) investigate the effectiveness, acceptability, usability, and safety of mechanochemistry for destruction of toxic organic pollutants. As a result, this review will be a guiding source for the mechanochemistry applications in waste management and the related mechanisms.

Kaynakça

  • Fernández-Bertran, J. F., Mechanochemistry: An Overview, Pure and Applied Chemistry, 71, 4, 581-586, (1999).
  • Heinicke, G., Tribochemistry, Akademic-Verlag, Berlin, (1984).
  • Boldyrev, V.V. ve Tkácová, K., Mechanochemistry of solids: past, present, and prospects, Journal of Materials Synthesis and Processing, 8, 2-4, 121-132, (2000).
  • Wieczorek-Ciurowa, K. ve Gamrat, K., Mechanochemical syntheses as an example of green processes, Journal of Thermal Analysis and Calorimetry, 88, 213-217, (2007).
  • Lu, S., Huang, J., Peng, Z., Lia, X. ve Yan, J., Ball milling 2,4,6-trichlorophenol with calcium oxide: Dechlorination experiment and mechanism considerations, Chemical Engineering Journal, 195, 62–68, (2012).
  • Mitchenko, S.A., Mechanochemistry in heterogeneous catalysis, Theoretical and Experimental Chemistry, 43, 4, 211-228, (2007).
  • Cagnetta, G., Robertson, J., Huang, J., Zhang, K. ve Yu, G., Mechanochemical destruction of halogenated organic pollutants: A critical review, Journal of Hazardous Materials, 313, 85-102, (2016).
  • Wei, Y., Yan, J., Lu, S. ve Li, X., Mechanochemical decomposition of pentachlorophenol by ball milling, Journal of Environmental Sciences, 21, 12, 1761–1768, (2009).
  • Wikström, E. ve Marklund, S., The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste, Chemosphere, 43, 2, 227-234, (2001).
  • Zinoviev, S., Fornasiero, P., Lodolo, A. ve Miertus, S., Non-combustion technologies for POPs destruction, Review and evaluation, International Centre for Science and Hich Technology of the United Nations Industrial Organisation (ICS-UNIDO), Trieste, (2007).
  • Rattley, M., Ambiguous bromine, Nature Chemistry, 4, 512, (2012).
  • Tange, L. ve Drohmann, D., Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment-thermal process, Polymer Degradation and Stability, 88, 1, 35-40, (2005).
  • Hollis, J.R., Plasma temperature incineration, Environmental Progress, 2, 1, 7, (1983).
  • Tomio, S. ve Masamitsa, T., Development of Fluidized Bed Gasification and Swirl-flow Melting Process for Municipal Solid Wastes, The University of Seoul Press, 1-10, (2002).
  • Ecke, H., Sakanakura, H. ve Matsuto, T., State-of-the-art treatment processes for municipal solid incineration residues in Japan, Waste Management and Research, 18, 1, 41-51, (2000).
  • Hagenmaier, H., Kraft, M. ve Brunner, H., Catalytic effects of fly ash from incineration facilities on the formation and decomposition of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans, Environmental Science and Technology, 21, 11, 1080-1084, (1987).
  • Tiernan, T.O., Wagel, D.J. ve VanNess, G.F., Treatment of complex chemical wastes with the base catalyzed decomposition (BCD) process, Organohalogen Compd., 8, 289-292, (1992).
  • Shi, W. ve Zhang, J., Photodegradation mechanism and its influential factors of PVC, China Synthetic Resin and Plastics, 23, 80-84, (2006).
  • Gao, J., Distribution, microbial effects and bioremediation of PCBs in typical polluted agricultural soils in the Yangtze River Delta, Ph.D., University of Zhejiang, China, (2005).
  • Zhang, T. ve Cheng, X.X., Progress of the research on persistent organic pollutants, Scitech Information Development Economy, 17, 206-208, (2007).
  • Rowlands, S.A., Hall, A.K., Mccormick, P.G., Street, R., Hart, R. J., Ebell, G.F. ve Donecker, P., Destruction of toxic materials, Nature, 367:223, (1993).
  • Zhang, Q.W., Matsumoto, H., Saito, F. ve Baron, M., Debromination of hexabromobenzene by its co-grinding with CaO, Chemosphere, 48, 787–793, (2002).
  • Zhang, K., Huang, J., Yu, G., Zhang, Q., Deng, S. ve Wang, B., Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling, Environmental Science and Technology, 47, 12, 6471–6477, (2013).
  • Nah, I.W., Hwang, K. ve Shul, Y., Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs), Chemosphere, 73, 1, 138–141, (2008).
  • Birke, V., Mattik, J., Runne, D., Benning, H.ve Zlatovic, D., Dechlorination of recalcitrant polychlorinated contaminants using ball milling. In: Proceedings of the NATO ARW on ecological risks associated with the destruction of chemical weapons, Luneburg, DE, 22–26 October. Vol. I: 111–127, (2003).
  • Zhang, K., Huang, J., Zhang, W., Yu, Y., Deng, S. ve Yu, G., Mechanochemical Degradation of Tetrabromobisphenol A: Performance, Products and Pathway, Journal Hazardous Materials, 243, 278-285, (2012).
  • Yu, Y., Huang, J., Zhang, W., Zhang, K., Deng, S. ve Yu, G., Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill, Chemosphere, 90, 5, 1729-1735, (2013).
  • Hu, S., Junya, K., Fumio, S., Shimme, K., Masuda, S. ve Inoue, T., Effect of additives on dechlorination of PVC by mechanochemical treatment, Journal of Material Cycles and Waste Management, 3, 1, 20–23, (2001).
  • Nomura, Y., Fujiwara, K., Terada, A., Nakai, S. ve Hosomi, M., Mechanochemical degradation of ϒ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO, Chemosphere, 86, 228-234, (2011).
  • Khoa, H.X., Bae, S., Bae, S., Kim, B., Kim, J.S., Planetary Ball Mill Process in Aspect of Milling Energy, Journal of Korean Metallurgy Institute, 21, 2, 155-164, (2014).
  • Leo, D. P., Pizzigallo, M. D. R., Ancona, V., Benedetto, F. D., Mesto, E., Schingaro, E. ve Ventruti, G., Mechanochemical degradation of pentachlorophenol onto birnessite, Journal of Hazardous Materials, 244-245, 303-310, (2013).
  • Lu, M., Cagnetta, G., Zhang, K. ve Huang, J., Mechanochemical mineralization of “very persistent” fluorocarbon surfactants ‒ 6:2 fluorotelomer sulfonate (6:2FTS) as an example, Nature, 7, 1-10, (2017).
  • Palaniandy, S., Impact of mechanochemical effect on chalcopyrite leaching, International Journal of Mineral Processing, 136, 56-65, (2015).
  • Burgio, N., Iasonna, A., Magini, M., Martelli, S. ve Padella, F., Mechanical Alloying of the Fe-Zr System. Correlation between Input Energy and End Products, Il Nuovo Cimento, 13, 4, 459-476, (1991).
  • Chattopadhyay, P. P., Manna, I., Talapatra, S. ve Pabi, S. L., A mathematical analysis of milling mechanics in a planetary ball mill, Materials Chemistry and Physics, 68 (1-3), 85-94, (2001).
  • Martinez, V., Stolar, T., Karadeniz, B., Brekalo, I. ve Uzarevic, K., Advancing mechanochemical synthesis by combining milling with different energy sources, Nature Review Chemistry, 7, 51–65, (2023).
  • Cagnetta, G., Huang, J., Wang, B., Deng, S., Yu, G., A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants, Chemical Engineering Journal, 291, 30-38, (2016).
  • Cagnetta, G., Liu, H., Zhang, K., Huang, J., Wang, B., Deng, S., Wang, Y. ve Yu, G., Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach, Nature, Scientific Reports, 6 (28394), 1-13, (2016).
  • Zhang, W., Huang, J., Xu, F., Deng, S., Zhu, W. ve Yu, G., Mechanochemical Destruction of Pentachloronitrobenzene with Reactive Iron Powder, Journal Hazardous Materials, 198, 275-281, (2011).
  • Zhang, W., Wang, H., Jun, H., Yu, M., Wang, F., Zhou, L., Yu, G., Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand, Chemical Engineering Journal, 239, 1, 185-191, (2014).
  • Ren, Y., Kang, S., Zhu, J., Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive, Journal of Material Cycles Waste Management, 17, 4, 607-615, (2015).
  • Zhang, T., Huang, J., Zhang, W., Yu, Y., Deng, S., Wang, B., Yu, G., Coupling the dechlorination of aqueous 4-CP with the mechanochemical destruction of solid PCNB using Fe-Ni-SiO2, Journal of Hazardous Materials, 250-251, 175-180, (2013).
  • Mitoma, Y., Miyata, H., Egashira, N., Simion, A.M., Kakeda, M. ve Simion, C., Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent, Chemosphere, 83, 10, 1326-1330, (2011).
  • Wang, H., Huang, J., Zhang, S., Xu, Y., Zhang, K., Liu, K., Cao, Z., Yu, G., Deng, S. ve Wang, Y., Study of degradation mechanism of dechlorane plus by mechanochemical reaction with aluminum and quartz sand, Chemical Engineering Journal, 292, 98-104, (2016).
  • Mulas, G., Loiselle, S., Schiffini, L. ve Cocco, G., The mechanochemical self propagating reaction between hexachlorobenzene and calcium hydride, Journal of Solid State Chemistry, 129, 2, 263-270, (1997).
  • Hosomi, M., Nomura, Y. ve Zhou, S., Degradation of POPs Pesticides by Mechanochemical Treatment, China POPs Forum, (The 3rd National Symposium on Persistent Organic Pollutants), Beijing, (2008).
  • Hall, A. K., Harrowfield, J., Hart, R. J. ve Mccormick, P., Mechanochemical Reaction of DDT with Calcium Oxide, Environmental Science & Technology, 30, 12, 3401-3407, (1996).
  • Zhang, W., Huang, J., Yu, G., Deng, S. ve Zhu, W., Mechanochemical destruction of Dechlorane Plus with calcium oxide, Chemosphere, 81, 3, 345-350, (2010).
  • Nomura, Y., Aono, S., Arino, T., Yamamoto, T., Terada, A., Noma, Y. ve Hosomi, M., Degradation of polychlorinated naphthalene by mechanochemical Treatment, Chemosphere, 93, 11, 2657-2661, (2013).
  • Pelitli, V., Kurt, U. ve Canlı, O., Mechanochemical degradation of Tehnical Hexachlorocyclohexane with Calcium oxide, Journal of the Faculty of Engineering and Architecture of Gazi University, 34, 2, 961-973 (2019).
  • Pelitli, V. ve Kurt, U., Hexachlorocyclohexane (HCH): optimization of mechanochemical degradation process by CaO, Journal of Polytechnic, 24, 2, 439-452, (2021).
  • Pagola, S., Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View, Crystals, 13, 124, 3-33, (2023).
  • Rodygin, K. S., Ledovskaya, M. S., Voronin, V. V., Lotsman, K.A. ve Ananikov, V.P., Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability, Chemistry Europe, 43-52, (2021).
  • Cuccu, F., De Luca, L., Delogu, F., Colacino, E., Solin, N., Mocci, R. ve Porcheddu, A., Mechanochemistry: New Tools to Navigate the Uncharted Territory of Impossible reactions, ChemSusChem, 15, 1-41, (2022).
  • Non-combustion Technology for POPs Waste Destruction Replacing Incineration with Clean Technology, IPEN, Sweden, (2021).
  • Dong, D., Zhang, Y., shan, M., Yin, T., Wang, T., Wang, J., Gao, W., Application of mechanochemical technology for removal/solidification pollutant and preparation/recycling energy storage materials, Journal of Cleaner Production, 348, 131351, (2022).
  • Fantozzi, N., Volle, J.N., Porcheddu, A., Virieux, D., Garcia, F., Colacino, E., Green metrics in mechanochemistry, Chemical Society Reviews, 52, 6680, (2023).
  • Reynes, J.F., Isoni, V., Garcia, F., Tinkering with Mechanochemical Tools for Scale Up, Angewandte Chemie International Edition, 62, e2023008, (2023).
  • Kubicki, D. J., Prochowicz, D., Hofstetter, A., Saski, M., Yadav, P., Bi, D., Pellet, N., Lewiński, J., Zakeeruddin, S. M., Grätzel, M., Emsley, L., Journal of the American Chemical Society, 140, 9, 3345-3351, (2018).
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Derleme Makalesi
Yazarlar

Volkan Pelitli 0000-0001-7332-4151

Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 19 Temmuz 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Pelitli, V. (2024). Toksik organik kirleticilerin mekanokimyasal parçalanması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 635-649. https://doi.org/10.25092/baunfbed.1329657
AMA Pelitli V. Toksik organik kirleticilerin mekanokimyasal parçalanması. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2024;26(2):635-649. doi:10.25092/baunfbed.1329657
Chicago Pelitli, Volkan. “Toksik Organik Kirleticilerin Mekanokimyasal parçalanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 2 (Temmuz 2024): 635-49. https://doi.org/10.25092/baunfbed.1329657.
EndNote Pelitli V (01 Temmuz 2024) Toksik organik kirleticilerin mekanokimyasal parçalanması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 635–649.
IEEE V. Pelitli, “Toksik organik kirleticilerin mekanokimyasal parçalanması”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 2, ss. 635–649, 2024, doi: 10.25092/baunfbed.1329657.
ISNAD Pelitli, Volkan. “Toksik Organik Kirleticilerin Mekanokimyasal parçalanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (Temmuz 2024), 635-649. https://doi.org/10.25092/baunfbed.1329657.
JAMA Pelitli V. Toksik organik kirleticilerin mekanokimyasal parçalanması. BAUN Fen. Bil. Enst. Dergisi. 2024;26:635–649.
MLA Pelitli, Volkan. “Toksik Organik Kirleticilerin Mekanokimyasal parçalanması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 2, 2024, ss. 635-49, doi:10.25092/baunfbed.1329657.
Vancouver Pelitli V. Toksik organik kirleticilerin mekanokimyasal parçalanması. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):635-49.