Araştırma Makalesi
BibTex RIS Kaynak Göster

Bases of fixed point subalgebras on nilpotent Leibniz algebras

Yıl 2024, , 272 - 278, 19.01.2024
https://doi.org/10.25092/baunfbed.1332488

Öz

Let K be a field of characteristic zero, X={x_(1,) x_2,…,x_n} and R_m={r_(1,) ,…,r_m} be two sets of variables, F be the free left nitpotent Leibniz algebra generated by X, and K[R_m ] be the commutative polynomial algebra generated by R_m over the base field K. The fixed point subalgebra of an automorphism φ is the subalgebra of F consisting of elements that are invariant under the automorphism. In this work, we consider specific automorphisms of F and determine the fixed point subalgebras of these automorphisms. Then, we find bases of these fixed point subalgebras. In addition, we get generators of these subalgebras as a free K[R_m ] -module.

Kaynakça

  • Bloh, A., On a generalization of Lie algebra notion, Mathematical in USSR Doklady, 165 (3), 471-473, (1965).
  • Loday, J. L., Une version noncommutative des algebres de Lie: les algebres de Leibniz, Enseignement Mathématique 39, 269-293, (1993).
  • Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebra and (co)Homology, Mathematical Annalen 296, 139-158, (1993).
  • Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26, 435-446, (1998).
  • Drensky, V., Piacentini Cattaneo G. M., Varieties of metabelian Leibniz algebras, Journal of Algebra and its Applications 1, 31-50, (2002).
  • Abanina, L. E., Mishchenko, S. P., The variety of Leibniz algebras defined by the identity , Serdica Mathematical Journal 29, 291–300, (2003).
  • Agore, A. L., Militaru, G., Itˆo’s theorem and metabelian Leibniz algebras, Linear Multilinear Algebra 63(11), 2187-2199, (2005).
  • Özkurt, Z., Orbits and test elements in free Leibniz algebras of rank two, Communications in Algebra 43 (8), 3534-3544, (2015).
  • Taş Adıyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras of rank three, Turkish Journal of Mathematics 43 (5), 2262-2274, (2019).
  • Taş Adıyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras, Communications in Algebra 49 (10), 4348-4359, (2021).
  • Fındık, Ş., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, Turkish Journal of Mathematics 44 (6), 2306-2311, (2020).
  • Drensky, V., Papıstas, A. I., Automorphisms of free left nilpotent Leibniz algebras”, Communications in Algebra, 33, 2957-2975, (2005).
  • Formanek, E., Noncommutative invariant theory, in group actions on rings, Contemporary Mathematics 43, 87–119, (1985),
  • Bryant, R. M., On the fixed points of a finite group acting on a free Lie algebra, Journal of London Mathematical Society 43(2), 215–224, (1991)
  • Drensky, V., Fixed algebras of residually nilpotent Lie algebras, Proceedings of American Mathematical Society 120, 1021–1028, (1994).
  • Bryant, R. M., Papistas, A.I., On the fixed points of a finite group acting on a relatively free Lie algebra, Glasgow Mathematical Journal 42, 167–181, (2000)
  • Ekici, N., Parlak Sönmez D., Fixed points of IA-endomorphisms of a free metabelian Lie Algebra, Proceedings Indian Academy of Science 121(4), 405–416, (2011).

Nilpotent Leibniz cebirlerinde sabit nokta altcebirlerinin bazları

Yıl 2024, , 272 - 278, 19.01.2024
https://doi.org/10.25092/baunfbed.1332488

Öz

K karakteristiği 0 olan bir cisim, X={x_(1,) x_2,…,x_n} ve R_m={r_(1,) ,…,r_m} iki değişkenler kümesi, F, K cismi üzerinde X tarafından üretilen bir serbest sol nilpotent Leibniz cebiri ve K[R_m ], K cismi üzerinde R_m tarafından üretilen komutatif polinomlar cebiri olsunlar. F nin bir φ otomorfizminin sabit nokta altcebiri, F nin bu otomorfizm altında invaryant kalan elemanlarını içeren altcebiridir. Bu çalışmada F nin bazı özel otomorfizmleri ele alınarak bu otomorfizmlerin sabit nokta altcebirleri belirlenmiştir. Sonra, bu sabit nokta altcebirlerinin baz kümeleri elde edilmiştir. Daha sonra bu altcebirlerin serbest K[R_m ]-modülü olarak üreteçleri verilmiştir.

Kaynakça

  • Bloh, A., On a generalization of Lie algebra notion, Mathematical in USSR Doklady, 165 (3), 471-473, (1965).
  • Loday, J. L., Une version noncommutative des algebres de Lie: les algebres de Leibniz, Enseignement Mathématique 39, 269-293, (1993).
  • Loday, J. L., Pirashvili, T., Universal enveloping algebras of Leibniz algebra and (co)Homology, Mathematical Annalen 296, 139-158, (1993).
  • Mikhalev, A. A., Umirbaev, U. U., Subalgebras of free Leibniz algebras, Communications in Algebra, 26, 435-446, (1998).
  • Drensky, V., Piacentini Cattaneo G. M., Varieties of metabelian Leibniz algebras, Journal of Algebra and its Applications 1, 31-50, (2002).
  • Abanina, L. E., Mishchenko, S. P., The variety of Leibniz algebras defined by the identity , Serdica Mathematical Journal 29, 291–300, (2003).
  • Agore, A. L., Militaru, G., Itˆo’s theorem and metabelian Leibniz algebras, Linear Multilinear Algebra 63(11), 2187-2199, (2005).
  • Özkurt, Z., Orbits and test elements in free Leibniz algebras of rank two, Communications in Algebra 43 (8), 3534-3544, (2015).
  • Taş Adıyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras of rank three, Turkish Journal of Mathematics 43 (5), 2262-2274, (2019).
  • Taş Adıyaman, T., Özkurt, Z., Automorphisms of free metabelian Leibniz algebras, Communications in Algebra 49 (10), 4348-4359, (2021).
  • Fındık, Ş., Özkurt, Z., Symmetric polynomials in Leibniz algebras and their inner automorphisms, Turkish Journal of Mathematics 44 (6), 2306-2311, (2020).
  • Drensky, V., Papıstas, A. I., Automorphisms of free left nilpotent Leibniz algebras”, Communications in Algebra, 33, 2957-2975, (2005).
  • Formanek, E., Noncommutative invariant theory, in group actions on rings, Contemporary Mathematics 43, 87–119, (1985),
  • Bryant, R. M., On the fixed points of a finite group acting on a free Lie algebra, Journal of London Mathematical Society 43(2), 215–224, (1991)
  • Drensky, V., Fixed algebras of residually nilpotent Lie algebras, Proceedings of American Mathematical Society 120, 1021–1028, (1994).
  • Bryant, R. M., Papistas, A.I., On the fixed points of a finite group acting on a relatively free Lie algebra, Glasgow Mathematical Journal 42, 167–181, (2000)
  • Ekici, N., Parlak Sönmez D., Fixed points of IA-endomorphisms of a free metabelian Lie Algebra, Proceedings Indian Academy of Science 121(4), 405–416, (2011).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Zeynep Yaptı Özkurt 0000-0001-9703-3463

Erken Görünüm Tarihi 6 Ocak 2024
Yayımlanma Tarihi 19 Ocak 2024
Gönderilme Tarihi 25 Temmuz 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yaptı Özkurt, Z. (2024). Bases of fixed point subalgebras on nilpotent Leibniz algebras. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 272-278. https://doi.org/10.25092/baunfbed.1332488
AMA Yaptı Özkurt Z. Bases of fixed point subalgebras on nilpotent Leibniz algebras. BAUN Fen. Bil. Enst. Dergisi. Ocak 2024;26(1):272-278. doi:10.25092/baunfbed.1332488
Chicago Yaptı Özkurt, Zeynep. “Bases of Fixed Point Subalgebras on Nilpotent Leibniz Algebras”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Ocak 2024): 272-78. https://doi.org/10.25092/baunfbed.1332488.
EndNote Yaptı Özkurt Z (01 Ocak 2024) Bases of fixed point subalgebras on nilpotent Leibniz algebras. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 272–278.
IEEE Z. Yaptı Özkurt, “Bases of fixed point subalgebras on nilpotent Leibniz algebras”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 1, ss. 272–278, 2024, doi: 10.25092/baunfbed.1332488.
ISNAD Yaptı Özkurt, Zeynep. “Bases of Fixed Point Subalgebras on Nilpotent Leibniz Algebras”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Ocak 2024), 272-278. https://doi.org/10.25092/baunfbed.1332488.
JAMA Yaptı Özkurt Z. Bases of fixed point subalgebras on nilpotent Leibniz algebras. BAUN Fen. Bil. Enst. Dergisi. 2024;26:272–278.
MLA Yaptı Özkurt, Zeynep. “Bases of Fixed Point Subalgebras on Nilpotent Leibniz Algebras”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2024, ss. 272-8, doi:10.25092/baunfbed.1332488.
Vancouver Yaptı Özkurt Z. Bases of fixed point subalgebras on nilpotent Leibniz algebras. BAUN Fen. Bil. Enst. Dergisi. 2024;26(1):272-8.