Offshore wind farms (OWF), artificial reefs (ARs) and marine ecology relationship
Yıl 2025,
Sayı: Advanced Online Publication, 1 - 21
Kadriye Zengin
,
Dilek Türker
,
Abdulkadir Ünal
Öz
The underwater foundations and surrounding structures of offshore wind turbines have the potential to function as artificial reefs (AR), creating new habitats for marine species. This represents an important opportunity to combine renewable energy generation with the promotion of marine biodiversity. When AR is utilised as an infrastructure for wind turbines with conscious planning, it can simultaneously enable both clean energy production that contributes to combating climate change and the protection of marine ecosystems. This study was prepared by examining national and international scientific literature in order to understand the biodiversity and ecological impacts of wind turbines built on artificial reefs in different seas and to contribute to the action plans and strategy documents to be created at national level within the scope of combating the climate crisis. In the review of national and international scientific literature, 34 different scientific studies published in peer-reviewed journals and the project experiences of researchers related to ARs were also utilised. In this context, the importance of renewable energy in the context of climate change and the protection of marine ecosystems has been discussed from the perspective of conservation and the positive and negative aspects of artificial reef-wind turbine interactions have been evaluated.
Kaynakça
-
Paxton, A.B., Shertzer, K.W., Bacheler, N.M., Kellison, G.T., Riley, K.L. and Taylor, J.C., Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all, Frontiers in Marine Science, 7, 282, (2020). https://doi.org/10.3389/fmars.2020.00282
-
Van Hal, R., Griffioen, A. B. and Van Keeken, O. A., Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm, Marine Environmental Research, 126, 26-36, (2017). https://doi.org/10.1016/j.marenvres.2017.01.009
-
Degraer, S., Carey, D.A., Coolen, J.W.P., Hutchison, Z.L., Kerckhof, F., Rumes, B. and Vanaverbeke, J., Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis, Oceanography, 33 (4), 18-28, (2020). https://doi.org/10.5670/oceanog.2020.405
-
Reubens, J.T., Vandendriessche, S., Zenner, A., Degraer, S. and Vincx, M., Offshore wind farms as productive sites or ecological traps for gadoid fishes? – Impact on growth, condition index and diet composition, Marine Environmental Research, 90, 66-74, (2013). https://doi.org/10.1016/j.marenvres.2013.05.013
-
Wilson, J.C. and Elliott, M., The habitat-creation potential of offshore wind farms, Wind Energy, 12 (2), 203-212, (2009). https://doi.org/10.1002/we.324
-
Dähne, M., Gilles, A., Lucke, K., Peschko, V., Adler, S., Krügel, K., Sundermeyer, J. and Siebert, U., Effects of pile‐driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany, Environmental Research Letters, 8 (2), 025002, (2013). https://doi.org/10.1088/1748-9326/8/2/025002
-
Gill, A. B., Bartlett, M. and Thomsen, F., Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from offshore wind farms, Journal of Fish Biology, 81 (2), 664-695, (2012). https://doi.org/10.1111/j.1095-8649.2012.03374.x
-
Vanermen, N., Onkelinx, T., Verschelde, P., Courtens, W., Van de Walle, M., Verstraete, H. and Stienen, E.W.M., Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol, Hydrobiologia, 756, 155-167, (2015).
-
Norro, A., Rumes, B. and Degraer, S., Differentiating between underwater construction noise of monopile and jacket foundations for offshore windmills: A case study from the Belgian part of the North Sea, The Scientific Journal 2013, Article ID 897624, (2013). http://dx.doi.org/10.1155/2013/897624
-
Claisse, J.T., Pondella II, D.J., Love, M., Zahn, L.A., Williams, C.M., Williams, J.P. and Bull, A.S., Oil platforms off California are among the most productive marine fish habitats globally, Proceedings of the National Academy of Sciences, 111 (43), 15462-15467, (2014). https://doi.org/10.1073/pnas.1411477111
-
Gill, A.B., Degraer, S., Lipsky, A., Mavraki, N., Methratta, E. and Brabant, R., Setting the context for offshore wind development effects on fish and fisheries, Oceanography, 33 (4), 118-127, (2020). https://doi.org/10.5670/oceanog.2020.411
-
Pezy, J.P., Raoux, A. and Dauvin, J.C., The environmental impact from an offshore windfarm: Challenge and evaluation methodology based on an ecosystem approach, Ecological Indicators, 114, 106302, (2020). https://doi.org/10.1016/j.ecolind.2020.106302
-
Glarou, M., Zrust, M. and Svendsen, J.C., Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: Implications for fish abundance and diversity, Journal of Marine Science and Engineering, 8 (5), 332, (2020). https://doi.org/10.3390/jmse8050332
-
Bracho-Villavicencio, C., Matthews-Cascon, H. and Rossi, S., Artificial reefs around the world: A review of the state of the art and a meta-analysis of its effectiveness for the restoration of marine ecosystems, Environments, 10 (7), 121, (2023). https://doi.org/10.3390/environments10070121
-
Hammar, L., Perry, D. and Gullström, M., Offshore wind power for marine conservation: net benefit or ecological cost? Open Journal of Marine Science, 6 (1), 1-13, (2016). http://dx.doi.org/10.4236/ojms.2016.61007
-
Maar, M., Bolding, K., Petersen, J.K., Hansen, J.L.S. and Timmermann, K., Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted offshore wind farm, Denmark, Journal of Sea Research 62 (2-3), 159-174, (2009).
-
Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K. and Wirtz, K.W., The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea, Hydrobiologia, 845, 35-53, (2019). https://doi.org/10.1007/s10750-018-3653-5
-
Bonou, A., Laurent, A. and Olsen, S. I., Life cycle assessment of onshore and offshore wind energy – from theory to application, Applied Energy, 180, 327-337, (2016).
-
Punt, M.J., Groeneveld, R.A., Van-Ierland, E.C. and Stel, J.H., Spatial planning of offshore wind farms: A windfall to marine environmental protection? Ecological Economics, 69 (1), 93-103, (2009). https://doi.org/10.1016/j.ecolecon.2009.07.013
-
Hermans, A., Bos, O.G. and Pursina, I., Nature-inclusive design: a strategy for marine infrastructure to enhance ecological functioning. The Ministry of Agriculture, Nature and Food Quality, Netherlands, (2020).
-
Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. and Wilhelmsson, D., Offshore wind park monitoring programmes, lessons learned and recommendations for the future, Hydrobiologia, 756 (1), 169-180, (2015). https://doi.org/10.1007/s10750-015-2267-4
-
Brandt, M.J., Dragon, A.C., Diederichs, A., Bellmann, M.A., Wahl, V., Piper, W., Nabe-Nielsen, J. and Nehls, G., Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany, Marine Ecology Progress Series, 596, 213-232, (2018). https://doi.org/10.3354/meps12560
-
Fowler, A.M., Jørgensen, A.M., Svendsen, J.C., Macreadie, P.I., Jones, D.O.B., Boon, A.R., Booth, D.J., Brabant, R., Callahan, E. and Claisse, J.T., Environmental benefits of leaving offshore infrastructure in the ocean, Frontiers in Ecology and the Environment, 16 (10), 571-578, (2018). https://doi.org/10.1002/fee.1827
-
Langhamer, O., Artificial reef effect in relation to offshore renewable energy conversion: state of the art, The Scientific World Journal, 2012. https://doi.org/10.1100/2012/386713
-
Methratta, E. T. and Dardick, W.R., Meta-analysis of finfish abundance at offshore wind farms, Reviews in Fisheries Science & Aquaculture, 27 (2), 242-260, (2019). https://doi.org/10.1080/23308249.2019.1584601
-
Wilhelmsson, D., Malm, T. and Öhman, M. C., The influence of offshore windpower on demersal fish, ICES Journal of Marine Science, 63 (5), 775-784, (2006). https://doi.org/10.1016/j.icesjms.2006.02.001
-
Bergström, L., Sundqvist, F. and Bergström, U., Effects of an offshore wind farm on temporal and spatial patterns in a demersal fish community, Marine Ecology Progress Series, 485, 199-210, (2013).
-
Bergström, L., Kautsky, L., Malm, T., Rosenberg, R., Wahlberg, M., Capetillo, N.A. and Wilhelmsson, D., Effects of offshore wind farms on marine wildlife: a generalized impact assessment, Environmental Research Letters, 9 (3), 034012, (2014). https://doi.org/10.1088/1748-9326/9/3/034012
-
Dannheim, J., Bergström, L., Birchenough, S.N.R., Brzana, R., Boon, A.R., Coolen, J.W.P., Dauvin, J.C., De Mesel, I., Derweduwen, J., Gill, A.B., Hutchison, Z.L., Jackson, A.C., Janas, U., Martin, G., Raoux, A., Reubens, J., Rostin, L., Vanaverbeke, J., Wilding, T.A., Wilhelmsson, D. and Degraer, S., Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research, ICES Journal of Marine Science, 77 (3), 1092-1108, (2020). https://doi.org/10.1093/icesjms/fsz018
-
De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. and Degraer, S., Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species, Hydrobiologia, 756 (1), 37-5, (2015). https://doi.org/10.1007/s10750-014-2157-1
-
Scheidat, M., Tougaard, J., Brasseur, S., Carstensen, J., van Polanen Petel, T., Teilmann, J. and Reijnders, P., Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea, Environmental Research Letters, 6, 025102, (2011). http://dx.doi.org/10.1088/1748-9326/6/2/025102
-
Vanermen, N., Courtens, W., Daelemans, R., Lens, L., Müller, W., Van de Walle, M., Verstraete, H. and Stienen, E., Attracted to the outside: A meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry, ICES Journal of Marine Science, 77 (2), 701-710, (2020). https://doi.org/10.1093/icesjms/fsz199
-
Davis, K.M., Nguyen, M.N., McClung, M.R. and Moran, M.D.A., Comparison of the impacts of wind energy and unconventional gas development on land-use and ecosystem services: an example from the Anadarko Basin of Oklahoma, USA. Environmental Management, 61, 796-804, (2018). https://doi.org/10.1007/s00267-018-1010-0
-
Çelik-Gül, G. and Gül, M., Chemical approach to offshore wind turbines: coating systems, environmental impacts, and sustainable development, Turkish Journal of Maritime and Marine Sciences, 10 (3), 131-144, (2024). https://doi.org/10.52998/trjmms.1415808
Açık deniz rüzgâr çiftlikleri (OWF), yapay resifler (ARs) ve deniz ekolojisi ilişkisi
Yıl 2025,
Sayı: Advanced Online Publication, 1 - 21
Kadriye Zengin
,
Dilek Türker
,
Abdulkadir Ünal
Öz
Açık deniz rüzgâr türbinlerinin su altındaki temelleri ve etrafındaki yapılar, aslında yapay resif (Artificial Reef, AR) işlevi görerek deniz canlıları için yeni habitatlar oluşturma potansiyeline sahiptir. Bu durum, yenilenebilir enerji üretimi ile deniz biyoçeşitliliğinin desteklenmesini bir araya getiren önemli bir fırsata işaret etmektedir. AR, bilinçli planlama ile rüzgâr türbinlerinin altyapısı olarak değerlendirildiğinde, hem iklim değişikliğiyle mücadeleye katkı sağlayan temiz enerji üretimini, hem de denizel ekosistemlerin korunmasını eşzamanlı olarak mümkün kılabilir. Bu çalışma, farklı denizlerde yapay resifler üzerine inşa edilen rüzgâr türbinlerinin biyoçeşitlilik ve ekolojik etkilerini anlayabilmek ve iklim krizi ile mücadele kapsamında ulusal düzeyde oluşturulacak eylem planı ve strateji belgelerine katkı sunabilmek amacıyla ulusal ve uluslararası bilimsel literatürlerin incelenmesi ile hazırlanmıştır. Ulusal ve uluslararası bilimsel literatürlerin incelenmesinde, yayınlanan çalışmaların hakemli dergide yayımlanmış 34 farklı bilimsel çalışma ve araştırmacıların AR’lar ile ilgili proje deneyimlerinden de faydalanılmıştır. Bu kapsamda iklim değişikliği bağlamında yenilenebilir enerjinin önemi ve deniz ekosistemlerinin korunması perspektifiyle ele alınmıştır ve yapay resif-rüzgâr türbini etkileşimlerinin olumlu ve olumsuz yönleri değerlendirilmiştir.
Etik Beyan
Etik Kurul Onayı: Bulunmamaktadır. Çalışma derleme bir çalışma olup herhangi bir şekilde deney hayvanı kullanılmamıştır.
Katılımcı Onamı: Bulunmamaktadır. Çalışma derleme bir çalışma olup herhangi bir şekilde kişisel veri bulundurmamaktadır.
Destekleyen Kurum
Herhangi bir kurum desteği alınmamıştır.
Kaynakça
-
Paxton, A.B., Shertzer, K.W., Bacheler, N.M., Kellison, G.T., Riley, K.L. and Taylor, J.C., Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all, Frontiers in Marine Science, 7, 282, (2020). https://doi.org/10.3389/fmars.2020.00282
-
Van Hal, R., Griffioen, A. B. and Van Keeken, O. A., Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm, Marine Environmental Research, 126, 26-36, (2017). https://doi.org/10.1016/j.marenvres.2017.01.009
-
Degraer, S., Carey, D.A., Coolen, J.W.P., Hutchison, Z.L., Kerckhof, F., Rumes, B. and Vanaverbeke, J., Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis, Oceanography, 33 (4), 18-28, (2020). https://doi.org/10.5670/oceanog.2020.405
-
Reubens, J.T., Vandendriessche, S., Zenner, A., Degraer, S. and Vincx, M., Offshore wind farms as productive sites or ecological traps for gadoid fishes? – Impact on growth, condition index and diet composition, Marine Environmental Research, 90, 66-74, (2013). https://doi.org/10.1016/j.marenvres.2013.05.013
-
Wilson, J.C. and Elliott, M., The habitat-creation potential of offshore wind farms, Wind Energy, 12 (2), 203-212, (2009). https://doi.org/10.1002/we.324
-
Dähne, M., Gilles, A., Lucke, K., Peschko, V., Adler, S., Krügel, K., Sundermeyer, J. and Siebert, U., Effects of pile‐driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany, Environmental Research Letters, 8 (2), 025002, (2013). https://doi.org/10.1088/1748-9326/8/2/025002
-
Gill, A. B., Bartlett, M. and Thomsen, F., Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from offshore wind farms, Journal of Fish Biology, 81 (2), 664-695, (2012). https://doi.org/10.1111/j.1095-8649.2012.03374.x
-
Vanermen, N., Onkelinx, T., Verschelde, P., Courtens, W., Van de Walle, M., Verstraete, H. and Stienen, E.W.M., Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol, Hydrobiologia, 756, 155-167, (2015).
-
Norro, A., Rumes, B. and Degraer, S., Differentiating between underwater construction noise of monopile and jacket foundations for offshore windmills: A case study from the Belgian part of the North Sea, The Scientific Journal 2013, Article ID 897624, (2013). http://dx.doi.org/10.1155/2013/897624
-
Claisse, J.T., Pondella II, D.J., Love, M., Zahn, L.A., Williams, C.M., Williams, J.P. and Bull, A.S., Oil platforms off California are among the most productive marine fish habitats globally, Proceedings of the National Academy of Sciences, 111 (43), 15462-15467, (2014). https://doi.org/10.1073/pnas.1411477111
-
Gill, A.B., Degraer, S., Lipsky, A., Mavraki, N., Methratta, E. and Brabant, R., Setting the context for offshore wind development effects on fish and fisheries, Oceanography, 33 (4), 118-127, (2020). https://doi.org/10.5670/oceanog.2020.411
-
Pezy, J.P., Raoux, A. and Dauvin, J.C., The environmental impact from an offshore windfarm: Challenge and evaluation methodology based on an ecosystem approach, Ecological Indicators, 114, 106302, (2020). https://doi.org/10.1016/j.ecolind.2020.106302
-
Glarou, M., Zrust, M. and Svendsen, J.C., Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: Implications for fish abundance and diversity, Journal of Marine Science and Engineering, 8 (5), 332, (2020). https://doi.org/10.3390/jmse8050332
-
Bracho-Villavicencio, C., Matthews-Cascon, H. and Rossi, S., Artificial reefs around the world: A review of the state of the art and a meta-analysis of its effectiveness for the restoration of marine ecosystems, Environments, 10 (7), 121, (2023). https://doi.org/10.3390/environments10070121
-
Hammar, L., Perry, D. and Gullström, M., Offshore wind power for marine conservation: net benefit or ecological cost? Open Journal of Marine Science, 6 (1), 1-13, (2016). http://dx.doi.org/10.4236/ojms.2016.61007
-
Maar, M., Bolding, K., Petersen, J.K., Hansen, J.L.S. and Timmermann, K., Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted offshore wind farm, Denmark, Journal of Sea Research 62 (2-3), 159-174, (2009).
-
Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K. and Wirtz, K.W., The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea, Hydrobiologia, 845, 35-53, (2019). https://doi.org/10.1007/s10750-018-3653-5
-
Bonou, A., Laurent, A. and Olsen, S. I., Life cycle assessment of onshore and offshore wind energy – from theory to application, Applied Energy, 180, 327-337, (2016).
-
Punt, M.J., Groeneveld, R.A., Van-Ierland, E.C. and Stel, J.H., Spatial planning of offshore wind farms: A windfall to marine environmental protection? Ecological Economics, 69 (1), 93-103, (2009). https://doi.org/10.1016/j.ecolecon.2009.07.013
-
Hermans, A., Bos, O.G. and Pursina, I., Nature-inclusive design: a strategy for marine infrastructure to enhance ecological functioning. The Ministry of Agriculture, Nature and Food Quality, Netherlands, (2020).
-
Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. and Wilhelmsson, D., Offshore wind park monitoring programmes, lessons learned and recommendations for the future, Hydrobiologia, 756 (1), 169-180, (2015). https://doi.org/10.1007/s10750-015-2267-4
-
Brandt, M.J., Dragon, A.C., Diederichs, A., Bellmann, M.A., Wahl, V., Piper, W., Nabe-Nielsen, J. and Nehls, G., Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany, Marine Ecology Progress Series, 596, 213-232, (2018). https://doi.org/10.3354/meps12560
-
Fowler, A.M., Jørgensen, A.M., Svendsen, J.C., Macreadie, P.I., Jones, D.O.B., Boon, A.R., Booth, D.J., Brabant, R., Callahan, E. and Claisse, J.T., Environmental benefits of leaving offshore infrastructure in the ocean, Frontiers in Ecology and the Environment, 16 (10), 571-578, (2018). https://doi.org/10.1002/fee.1827
-
Langhamer, O., Artificial reef effect in relation to offshore renewable energy conversion: state of the art, The Scientific World Journal, 2012. https://doi.org/10.1100/2012/386713
-
Methratta, E. T. and Dardick, W.R., Meta-analysis of finfish abundance at offshore wind farms, Reviews in Fisheries Science & Aquaculture, 27 (2), 242-260, (2019). https://doi.org/10.1080/23308249.2019.1584601
-
Wilhelmsson, D., Malm, T. and Öhman, M. C., The influence of offshore windpower on demersal fish, ICES Journal of Marine Science, 63 (5), 775-784, (2006). https://doi.org/10.1016/j.icesjms.2006.02.001
-
Bergström, L., Sundqvist, F. and Bergström, U., Effects of an offshore wind farm on temporal and spatial patterns in a demersal fish community, Marine Ecology Progress Series, 485, 199-210, (2013).
-
Bergström, L., Kautsky, L., Malm, T., Rosenberg, R., Wahlberg, M., Capetillo, N.A. and Wilhelmsson, D., Effects of offshore wind farms on marine wildlife: a generalized impact assessment, Environmental Research Letters, 9 (3), 034012, (2014). https://doi.org/10.1088/1748-9326/9/3/034012
-
Dannheim, J., Bergström, L., Birchenough, S.N.R., Brzana, R., Boon, A.R., Coolen, J.W.P., Dauvin, J.C., De Mesel, I., Derweduwen, J., Gill, A.B., Hutchison, Z.L., Jackson, A.C., Janas, U., Martin, G., Raoux, A., Reubens, J., Rostin, L., Vanaverbeke, J., Wilding, T.A., Wilhelmsson, D. and Degraer, S., Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research, ICES Journal of Marine Science, 77 (3), 1092-1108, (2020). https://doi.org/10.1093/icesjms/fsz018
-
De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. and Degraer, S., Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species, Hydrobiologia, 756 (1), 37-5, (2015). https://doi.org/10.1007/s10750-014-2157-1
-
Scheidat, M., Tougaard, J., Brasseur, S., Carstensen, J., van Polanen Petel, T., Teilmann, J. and Reijnders, P., Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea, Environmental Research Letters, 6, 025102, (2011). http://dx.doi.org/10.1088/1748-9326/6/2/025102
-
Vanermen, N., Courtens, W., Daelemans, R., Lens, L., Müller, W., Van de Walle, M., Verstraete, H. and Stienen, E., Attracted to the outside: A meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry, ICES Journal of Marine Science, 77 (2), 701-710, (2020). https://doi.org/10.1093/icesjms/fsz199
-
Davis, K.M., Nguyen, M.N., McClung, M.R. and Moran, M.D.A., Comparison of the impacts of wind energy and unconventional gas development on land-use and ecosystem services: an example from the Anadarko Basin of Oklahoma, USA. Environmental Management, 61, 796-804, (2018). https://doi.org/10.1007/s00267-018-1010-0
-
Çelik-Gül, G. and Gül, M., Chemical approach to offshore wind turbines: coating systems, environmental impacts, and sustainable development, Turkish Journal of Maritime and Marine Sciences, 10 (3), 131-144, (2024). https://doi.org/10.52998/trjmms.1415808