Araştırma Makalesi
BibTex RIS Kaynak Göster

Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl

Yıl 2017, , 99 - 115, 29.09.2017
https://doi.org/10.25092/baunfbed.340553

Öz

The optimized geometrical structures, harmonic
vibrational wavenumbers, the highest occupied molecular orbital (HOMO)
energies, the lowest unoccupied molecular orbital (LUMO) energies, the
electronic properties (total energy, dipole moment, electronegativity, chemical
hardness and softness), molecular surfaces, and nonlinear optical (NLO)
parameters [mean polarizability <α>, the anisotropy of the polarizability
á∆αñ, and the mean first-order hyperpolarizability <β >] of oxamyl
[N,N-dimethyl-2-methylcarbamoyloxymino-2-(methylthio) acetamide] been
investigated by the Hartree-Fock (HF) and Density Functional Theory (DFT) using
B3LYP functional with 6-311++G(d,p) basis set.

Kaynakça

  • García Hernández J.E., Notario del Pino J.S., González Martín M.M., Díaz Díaz R. and Febles González E.J., Natural phillipsite as a matrix for a slow-release formulation of oxamyl, Environmental Pollution, 88, 355-359, (1995).
  • Worthing C.R. and Hance R.J., The Pesticide Manual, 637, 9th Edn. British Crop Protection Council, (1991).
  • Leistra M., Behaviour and significance of pesticide residues in ground water, Aspects of Applied Biology, 17, 223-229, (1988).
  • Ecobicon D.J., Toxic effects of pesticides, in Klassen, C.D., (Ed.), Casarett & Doull’s Toxicology, The Basic Science of Poisons, 763-810, McGraw-Hill, New York, (2001).
  • United States Environmental Protection Agency (USEPA), Carbamate cumulative assessment group for the N-methyl carbamates, (2004). http://www.epa.gov.
  • Kwon E., Park K., Park H. and Kim T., Crystal structure of oxamyl, Acta Crystallographica, E72, 1816–1818, (2016).
  • Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., , Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision A.11.4, Gaussian Inc., Wallingford CT, (2009).
  • Dennington R., Keith T. and Millam J., GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke A.D., Density‐functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648-5652, (1993).
  • Lee C.T., Yang W.T. and Parr R.G., Development of the Colle-Salvetti correlation-energy Formula into a functional of the electron density, Physical Review B, 37, 785-789, (1988).
  • Jamróz M.H. and Dobrowolski J. Cz., Potential Energy Distribution Analysis (PED) of DFT Calculated IR Spectra of the most Stable Li, Na, Cu(I) Diformate Molecules, Journal of Molecular Structure, 565–566, 475–480, (2001).
  • Sivaranjani T., Periandy S. and Xavier S., Conformational stability, molecular structure, vibrational, electronic, 1H and 13C spectral analysis of 3-pyridinemethanol using ab-initio/DFT method, Journal of Molecular Structure, 1108, 398-410, (2016).
  • Koopmans T.C., About the allocation of wave functions and eigenvalues of the individual electrons one atom, Physica (Amsterdam), 1, 104-112, (1934).
  • Senet P., Chemical hardnesses of atoms and molecules from frontier orbitals, Chemical Physics Letters, 275, 527-532, (1997).
  • Pauling L., The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960).
  • Hinchliffe A., Nikolaidi B. and Machado H.J.S., Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules, International Journal of Molecular Sciences, 5(8), 224-238, (2004).
  • Buckingham A.D., Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, Advances in Chemical Physics, 12, 107-142, (1967).
  • Mclean A.D. and Yoshimine M., Theory of Molecular Polarizabillities, The Journal of Chemical Physics, 47, 1927, (1967).
  • Lin C. and Wu K., Theoretical studies on the nonlinear optical susceptibilities of 3-methoxy-4-hydroxy-benzaldehyde crystal, Chemical Physics Letters, 321, 83-88, (2000).
  • Abraham J.P., Sajan D., Hubert I.J. and Jayakumar V.S., Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 355-367, (2008).
  • Karamanis P., Pouchan C. and Maroulis G., Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations, Physical Review A, 77, 013201-013203, (2008).
  • Eşme A., Sağdınç S.G., Theoretical Studies of Molecular Structures, Infrared Spectra, NBO and NLO Properties of Some Novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone Dyes, Acta Physica Polonica A, 130, 1273-1287, (2016).
  • Huang W., and Qian H., Structural characterization of C.I. Disperse Yellow 114”, Dyes and Pigments, 77, 446-450, (2008).
  • Raja M., Raj Muhamed R., Muthu S. and Suresh M., Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide, Journal of Molecular Structure, 1141, 284-298, (2017).
  • Öner N., Tamer Ö., Avcı D. and Atalay Y., Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 542-549, (2014).
  • Fleming I., Frontier Orbitals and Organic Chemical Reactions, Wiley, London, (1976).
  • Karelson M., Lobanov V.S. and Katritzky A.R., Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chemical Reviews, 96, 1027-1044, (1996).
  • Eşme A. and Sağdınç S.G., The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol], Journal of Molecular Structure, 1048, 185-195, (2013).
  • Çiçek B., Çakır U. and Azizoglu A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121-125, (2012).
  • O’Boyle N.M., Tenderholt A.L. and Langer K.M., cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry, 29, 839–845, (2008).
  • Chattaraj P.K., Nath S. and Maiti B., Computational Medicinal Chemistry for Drug Discovery, Marcel Dekker, New York, 2003.
  • Politzer P. and Murray J., The fundamental nature and role of the electrostatic potential in atoms and molecules, Theoretical Chemistry Accounts, 108, 134-142, (2002).
  • Prasad O., Sinha L. and Kumar N., Theoretical Raman and IR spectra of tegafur and comparison of molecular electrostatic potential surfaces, polarizability and hyerpolarizability of tegafur with 5-fluoro-uracil by density functional theory, Journal of Atomic and Molecular Sciences, 1, 201-214, (2010).
  • Ceylan Ü., Tarı G.Ö., Gökçe H., and Ağar E., Spectroscopic (FT–IR and UV–Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, Journal of Molecular Structure, 1110, 1-10, (2016).
  • Sivaranjani T., Periandy S. and Xavier S., Conformational stability, molecular structure, vibrational, electronic, 1H and 13C spectral analysis of 3-pyridinemethanol using ab-initio/DFT method, Journal of Molecular Structure, 1108, 398-410, (2016).
  • Colthup N.B., Daly L.H. and Wiberly S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1975.
  • Debnath D., Roy S., Li B., Lin C. and Misra T.K., Synthesis, structure and study of azo-hydrazone tautomeric equilibrium of 1,3-dimethyl-5-(arylazo)-6-amino-uracil derivatives, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 185–197, (2015).
  • Srivastava R. K., Narayan V., Prasad O. and Sinha L., Vibrational, Structural and Electronic properties of 6-methyl nicotinic acid by Density Functional Theory,Journal of Chemical Pharmaceutical Research, 4 (6) (2012) 3287-3296.
  • Singh G., Abbas J.M., Dogra S.D., Sachdeva R., Rai B., Tripathi S.K., Prakash S., Sathe V. and Saini G.S.S., Vibrational and electronic spectroscopic studies of melatonin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 73–81, (2014).
  • Tanak H., Koysal Y., Işık Ş., Yaman H. and Ahsen V., Experimental and computational approaches to the molecular structure of 3-(2-Mercaptopyridine)phthalonitrile, Bulletin of Korean Chemical Society, 32, 673-680, (2011).
  • Teimouri A., Chermahini A. N., Taban K., Dabbagh H.A., Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 369–377, (2009).

Oksamil molekülünün moleküler yapısının, spektroskopik, elektronik ve NLO özelliklerinin teorik olarak incelenmesi

Yıl 2017, , 99 - 115, 29.09.2017
https://doi.org/10.25092/baunfbed.340553

Öz

6-311++G(d,p) temel seti ile yoğunluk
fonksiyonu teorisi (DFT/B3LYP) ve Hartree-Fock (HF) metodları kullanılarak
geometrik parametreleri (bağ uzunlukları ve bağ açıları), harmonik titreşim
dalga sayıları, en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler
orbitallerin (LUMO) enerjileri, elektronik özellikleri (toplam enerji, dipol
moment, elektronegativite, kimyasal sertlik ve yumuşaklık), moleküler yüzeyler,
ve doğrusal olmayan optik (NLO) parametreleri [kutuplanabilirlik <




















>, yönelime bağlı kutuplanabilirlik
á∆αñ, ve statik yüksek mertebe kutuplanabilirlik <

>] Gaussian 09W programı
kullanılarak incelendi.

Kaynakça

  • García Hernández J.E., Notario del Pino J.S., González Martín M.M., Díaz Díaz R. and Febles González E.J., Natural phillipsite as a matrix for a slow-release formulation of oxamyl, Environmental Pollution, 88, 355-359, (1995).
  • Worthing C.R. and Hance R.J., The Pesticide Manual, 637, 9th Edn. British Crop Protection Council, (1991).
  • Leistra M., Behaviour and significance of pesticide residues in ground water, Aspects of Applied Biology, 17, 223-229, (1988).
  • Ecobicon D.J., Toxic effects of pesticides, in Klassen, C.D., (Ed.), Casarett & Doull’s Toxicology, The Basic Science of Poisons, 763-810, McGraw-Hill, New York, (2001).
  • United States Environmental Protection Agency (USEPA), Carbamate cumulative assessment group for the N-methyl carbamates, (2004). http://www.epa.gov.
  • Kwon E., Park K., Park H. and Kim T., Crystal structure of oxamyl, Acta Crystallographica, E72, 1816–1818, (2016).
  • Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., , Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Revision A.11.4, Gaussian Inc., Wallingford CT, (2009).
  • Dennington R., Keith T. and Millam J., GaussView, Version 5.0.9, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke A.D., Density‐functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98, 5648-5652, (1993).
  • Lee C.T., Yang W.T. and Parr R.G., Development of the Colle-Salvetti correlation-energy Formula into a functional of the electron density, Physical Review B, 37, 785-789, (1988).
  • Jamróz M.H. and Dobrowolski J. Cz., Potential Energy Distribution Analysis (PED) of DFT Calculated IR Spectra of the most Stable Li, Na, Cu(I) Diformate Molecules, Journal of Molecular Structure, 565–566, 475–480, (2001).
  • Sivaranjani T., Periandy S. and Xavier S., Conformational stability, molecular structure, vibrational, electronic, 1H and 13C spectral analysis of 3-pyridinemethanol using ab-initio/DFT method, Journal of Molecular Structure, 1108, 398-410, (2016).
  • Koopmans T.C., About the allocation of wave functions and eigenvalues of the individual electrons one atom, Physica (Amsterdam), 1, 104-112, (1934).
  • Senet P., Chemical hardnesses of atoms and molecules from frontier orbitals, Chemical Physics Letters, 275, 527-532, (1997).
  • Pauling L., The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960).
  • Hinchliffe A., Nikolaidi B. and Machado H.J.S., Density Functional Studies of the Dipole Polarizabilities of Substituted Stilbene, Azoarene and Related Push-Pull Molecules, International Journal of Molecular Sciences, 5(8), 224-238, (2004).
  • Buckingham A.D., Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, Advances in Chemical Physics, 12, 107-142, (1967).
  • Mclean A.D. and Yoshimine M., Theory of Molecular Polarizabillities, The Journal of Chemical Physics, 47, 1927, (1967).
  • Lin C. and Wu K., Theoretical studies on the nonlinear optical susceptibilities of 3-methoxy-4-hydroxy-benzaldehyde crystal, Chemical Physics Letters, 321, 83-88, (2000).
  • Abraham J.P., Sajan D., Hubert I.J. and Jayakumar V.S., Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 355-367, (2008).
  • Karamanis P., Pouchan C. and Maroulis G., Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations, Physical Review A, 77, 013201-013203, (2008).
  • Eşme A., Sağdınç S.G., Theoretical Studies of Molecular Structures, Infrared Spectra, NBO and NLO Properties of Some Novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone Dyes, Acta Physica Polonica A, 130, 1273-1287, (2016).
  • Huang W., and Qian H., Structural characterization of C.I. Disperse Yellow 114”, Dyes and Pigments, 77, 446-450, (2008).
  • Raja M., Raj Muhamed R., Muthu S. and Suresh M., Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide, Journal of Molecular Structure, 1141, 284-298, (2017).
  • Öner N., Tamer Ö., Avcı D. and Atalay Y., Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 542-549, (2014).
  • Fleming I., Frontier Orbitals and Organic Chemical Reactions, Wiley, London, (1976).
  • Karelson M., Lobanov V.S. and Katritzky A.R., Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chemical Reviews, 96, 1027-1044, (1996).
  • Eşme A. and Sağdınç S.G., The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol], Journal of Molecular Structure, 1048, 185-195, (2013).
  • Çiçek B., Çakır U. and Azizoglu A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121-125, (2012).
  • O’Boyle N.M., Tenderholt A.L. and Langer K.M., cclib: A library for package-independent computational chemistry algorithms, Journal of Computational Chemistry, 29, 839–845, (2008).
  • Chattaraj P.K., Nath S. and Maiti B., Computational Medicinal Chemistry for Drug Discovery, Marcel Dekker, New York, 2003.
  • Politzer P. and Murray J., The fundamental nature and role of the electrostatic potential in atoms and molecules, Theoretical Chemistry Accounts, 108, 134-142, (2002).
  • Prasad O., Sinha L. and Kumar N., Theoretical Raman and IR spectra of tegafur and comparison of molecular electrostatic potential surfaces, polarizability and hyerpolarizability of tegafur with 5-fluoro-uracil by density functional theory, Journal of Atomic and Molecular Sciences, 1, 201-214, (2010).
  • Ceylan Ü., Tarı G.Ö., Gökçe H., and Ağar E., Spectroscopic (FT–IR and UV–Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, Journal of Molecular Structure, 1110, 1-10, (2016).
  • Sivaranjani T., Periandy S. and Xavier S., Conformational stability, molecular structure, vibrational, electronic, 1H and 13C spectral analysis of 3-pyridinemethanol using ab-initio/DFT method, Journal of Molecular Structure, 1108, 398-410, (2016).
  • Colthup N.B., Daly L.H. and Wiberly S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1975.
  • Debnath D., Roy S., Li B., Lin C. and Misra T.K., Synthesis, structure and study of azo-hydrazone tautomeric equilibrium of 1,3-dimethyl-5-(arylazo)-6-amino-uracil derivatives, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 185–197, (2015).
  • Srivastava R. K., Narayan V., Prasad O. and Sinha L., Vibrational, Structural and Electronic properties of 6-methyl nicotinic acid by Density Functional Theory,Journal of Chemical Pharmaceutical Research, 4 (6) (2012) 3287-3296.
  • Singh G., Abbas J.M., Dogra S.D., Sachdeva R., Rai B., Tripathi S.K., Prakash S., Sathe V. and Saini G.S.S., Vibrational and electronic spectroscopic studies of melatonin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 73–81, (2014).
  • Tanak H., Koysal Y., Işık Ş., Yaman H. and Ahsen V., Experimental and computational approaches to the molecular structure of 3-(2-Mercaptopyridine)phthalonitrile, Bulletin of Korean Chemical Society, 32, 673-680, (2011).
  • Teimouri A., Chermahini A. N., Taban K., Dabbagh H.A., Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 369–377, (2009).
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Aslı Eşme Bu kişi benim

Yayımlanma Tarihi 29 Eylül 2017
Gönderilme Tarihi 29 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Eşme, A. (2017). Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 99-115. https://doi.org/10.25092/baunfbed.340553
AMA Eşme A. Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. BAUN Fen. Bil. Enst. Dergisi. Ekim 2017;19(2):99-115. doi:10.25092/baunfbed.340553
Chicago Eşme, Aslı. “Theoretical Studies of Molecular Structure, Spectroscopic, Electronic and NLO Investigations of Oxamyl”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, sy. 2 (Ekim 2017): 99-115. https://doi.org/10.25092/baunfbed.340553.
EndNote Eşme A (01 Ekim 2017) Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 2 99–115.
IEEE A. Eşme, “Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl”, BAUN Fen. Bil. Enst. Dergisi, c. 19, sy. 2, ss. 99–115, 2017, doi: 10.25092/baunfbed.340553.
ISNAD Eşme, Aslı. “Theoretical Studies of Molecular Structure, Spectroscopic, Electronic and NLO Investigations of Oxamyl”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/2 (Ekim 2017), 99-115. https://doi.org/10.25092/baunfbed.340553.
JAMA Eşme A. Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. BAUN Fen. Bil. Enst. Dergisi. 2017;19:99–115.
MLA Eşme, Aslı. “Theoretical Studies of Molecular Structure, Spectroscopic, Electronic and NLO Investigations of Oxamyl”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 19, sy. 2, 2017, ss. 99-115, doi:10.25092/baunfbed.340553.
Vancouver Eşme A. Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. BAUN Fen. Bil. Enst. Dergisi. 2017;19(2):99-115.