Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu

Yıl 2017, , 137 - 152, 29.09.2017
https://doi.org/10.25092/baunfbed.340589

Öz

Bu çalışmada 2-amino-3-metilpiridinin
(amp), 1,4-pirazin-2,3-dikarboksilik
asit (H2pyzdc) ve tiyoglikolik asit (Htga) ile reaksiyonundan
sırasıyla proton transfer tuzları
(Hamp)+(Hpyzdc)-
(1)
 ve (Hamp)+(tga)- (2)
elde edilmiştir. Daha sonra elde edilen tuzların
(1 ve 2)  Cu(CH3COO)2.2H2O
ile reaksiyonundan ise metal kompleksleri 
(Hamp)2[Cu3(pyzdc)4(H2O)6].8H2O
(3) ve (Hamp)2[Cu(tga)2(H2O)2].2H2O
(4
sentezlenmiştir.  Tuzların yapıları
1H ve 13C-NMR, FT-IR ve UV-Vis  spekroskopileri ve elementel analiz
yöntemleri  ile aydınlatılmıştır. Tek kristali
elde edilemeyen komplekslerin yapıları ise FT-IR, UV-Vis, ICP-OES, manyetik
duyarlılık ve elementel analiz tekniklerinden elde edilen sonuçların
değerlendirilmesiyle önerilmiştir.

Kaynakça

  • Desiraju, G.R., A bond by any other name, Angewandte Chemie, 50, 52–59 (2011).
  • Kojić-Prodić, B. and Molčanov, K., The Nature of Hydrogen Bond: New Iinsights Into Old Theories. Acta Chimica Slovenica, 55, 692–708 (2008).
  • Steiner, T., The hydrogen bond in the solid state, Angewandte Chemie International Edition, 41, 48–76 (2002).
  • Braga, D., Grepioni, F. and Novoa, J.J., Inter-anion O–H–••• O–hydrogen bond like interactions: the breakdown of the strength–length analogy, Chemical Communication, 18, 1959–1960, (1998).
  • Fazil, S., Ravindran, R., Devi, A.S. and Bijili, B.K., Structural studies of 1-phenyl-2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium-2[(2-carboxyphenyl)-disulfanyl]-benzoate, Journal of Molecular Structure, 1021, 147–152, (2012).
  • Majerz, I. and Olovsson, I., Influence of proton transfer on the geometry of the donor and acceptor in NHN+ hydrogen bonds, Journal of Molecular Structure, 976, 11–18, (2010).
  • Özdemir, N. Structural and spectroscopic characterization of 2-mesityl-1H-benzo[d]imidazol-3-ium chloride: A combined experimental and theoretical analysis, Spectrochimica Acta, Part A, 91, 51–60, (2012).
  • Shehab, O.R. and Mansour, A.M. Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Molecular structures, spectral, and DFT studiesJ. Mol. Struct., 1093, 186–194, (2015).
  • Rzokee, A.A. and Ahmad, A., Synthesis, spectroscopic studies and thermal analysis of charge-transfer complex of 2,20-bipyridine with 4-hydroxybenzoic acid in different polar solvents, Journal of Molecular Structure, 1076, 453–460, (2014).
  • Refat, M.S., Adam, A.M.A. and Saad, H.A., Utility of charge-transfer complexation for the assessment of macrocyclic polyethers: Spectroscopic, thermal and surface morphology characteristics of two highly crown ethers complexed with acido acceptors, J. Mol. Struct., 1085, 178–190, (2015).
  • Gopi, R., Ramanathan, N. and Sundararajan, K., Hydrogen-bonded complexes of acetylene and acetonitrile: A matrix isolation infrared and computational study, Journal of Molecular Structure, 1083, 364–373, (2015).
  • Weiss, N.M., Waller, A.W. and Phillips, J.A., Infrared spectrum of CH3CN–HCl in solid neon, and modeling matrix effects in CH3CN–HCl and H3N–HCl, Journal of Molecular Structure, 1105, 341–349, (2016).
  • Perpetuo, G.J. and Janczak, J., Structural and spectroscopic characterization of 1-(diaminomethylene) thiouron-1-ium benzoate and bis(1-(diaminomethylene)-thiouron-1-ium) phthalate trihydrate, Journal of Molecular Structure, 1105, 434–443, (2016).
  • Dimitrova, Y. and Daskalova, L.I. Solvent effects on vibrational spectra of hydrogen-bonded complexes of propanedinitrile (malononitrile) and dimethyl sulfoxide (DMSO): Ab initio and DFT studies, Journal of Molecular Structure Theochem, 823, 65–73, (2007).
  • Al-Ahmary, K.M., Habeeb, M. and Al-Solmy, E.A., Spectroscopic studies of the hydrogen bonded charge transfer complex of 2-aminopyridine with π-acceptor chloranilic acid in different polar solvents, Journal of Moecular Liquids, 162, 129–134, (2011).
  • Alexeev, Y.E., Kharisov, B.I., Hermandez, T.C. and Garnovski, A.D., Coordination motifs in modern supramolecular chemistry, Coordination Chemistry Review, 254, 794–831, (2010).
  • Stepanovs, D., Jure, M. and Mishnev, A., Preparation and crystal structure of sildenafil salicylate, Mendeleev Communication, 25, 49–50, (2015).
  • Vepuri, S.B., Devarajegowda, H.C. and Soliman, M.E. Synthesis, characterization and molecular modelling of a novel dipyridamole supramolecule e X-ray structure, quantum mechanics and molecular dynamics study to comprehend the hydrogen bond structure reactivity relationship, Journal of Molecular Structure, 1105, 194–204, (2016).
  • Lopes Jesus, A.J. and Redinha, J.S., Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives, Journal of Physical Chemistry A, 115, 14069, (2011).
  • Kochanek, S.E., Clymer, T.M. Pakkala, V.S., Hebert, S.P., Reeping, K., Firestine, S.M. and Evanseck, J.D., Intramolecular Charge-Assisted Hydrogen Bond Strength in Pseudochair Carboxyphosphate, Journal of Physical Chemistry B, 119, 1184, (2015).
  • Yuge, T., Sakai, T., Kai, N., Hisaki, M. and Tohnai, N., Topological Classification and Supramolecular Chirality of 21-Helical Ladder-Type Hydrogen-Bond Networks Composed of Primary Ammonium Carboxylates: Bundle Control in 21-Helical Assemblies, European Journal of Chemistry, 14, 2984–2993, (2008).
  • Lemmerer, A., Two-Dimensional Hydrogen-Bonding Patterns in a Series of Salts of Terephthalic Acid and the Cyclic Amines CnH2n−1NH2, n = 3, 4, 5, 6, 7, 8, and 12, Crystal Growth and Design, 11, 583–593, (2011).
  • Deng, Z.-P., Huo, L.-H., Li, M.-S., Zhang, L.-W., Zhu, Z.-B., Zhao, H. and Gao, S., Syntheses, structures, and luminescent properties of silver (I) complexes constructed from ortho-hydroxyl arenesulfonic acids, Crystal Growth and Design, 11, 3090–3100, (2011).
  • Yang, G., Zhu, H.-G., Liang, B.-H. and Chen, X.-M., Syntheses and crystal structures of four metal–organic co-ordination networks constructed from cadmium(II) thiocyanate and nicotinic acid derivatives with hydrogen bond, Journal of Chemical Society, Dalton Transactions, 580–585, (2001).
  • Milacic, V., Chen, D., Giovagnini, L., Diez, A., Fregona, D. and Dou, Q.P., Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity, Toxicology Applied Pharmacology, 231, 24–33, (2008).
  • Dendrinou-Samara, C., Tsotsou, G., Ekateriniadou, L.V., Kortsaris, A.H., Raptopoulou, C.P., Terzis, A., Kyriakidis, D.A. and Kessissoglou, D.P., Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions, Journal of Inorganic Biochemistry, 71, 171–179, (1998).
  • Yenikaya, C., Büyükkıdan, N., Sarı, M., Keşli, R., İlkimen, H., Bülbül, M., and Büyükgüngör, O., Synthesis, characterization, and biological evaluation of Cu(II) complexes with the proton transfer salt of 2,6-pyridinedicarboxylic acid and 2-amino-4-methylpyridine, Journal of Coordination Chemistry, 64,19, 3353–3365, (2011).
  • Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Korkmaz, T. and Süzen, Y., Synthesis, characterization and biological activities of metal(II)dipicolinate complexes derived from pyridine-2,6-dicarboxylic acid and 2-(piperazin-1-yl)ethanol, Journal of Molecular Structure, 1101, 139-146, (2015).
  • Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan and Şahin, E., Synthesis, Characterization, and Antimicrobial Activity of a Novel Proton Salt and Its Cu(II) Complex, Russian Journal of Coordination Chemistry, 39, 96–103, (2013).
  • Lazarou, K. N., Perlepes, S. P., Psycharis, V., Raptopoulou, C. P., Synthetic study of the ternary copper(II)/maleamate(-1)/1,10- phenanthroline reaction system: Mononuclear, dinuclear and polymeric complexes, Polyhedron, 27, 2131–2142, (2008).
  • Ashok, M., Prasad, A. V. S. S., Ravinder, V. Synthesis, spectral studies and catalytic activity of ruthenium(II) complexes with organic amide ligands, Journal of the Brazilian Chemical Society, 18(8), 1492–1499, (2007).
  • Shah, A. I., Shukla, H. M., Shah, P. J., Raj, D. S. Novel co-ordination polymers of 8-hydroxyquinoline, Elixir Chemical Physics, 44, 7378–7381, (2012).

Synthesis and characterization of proton transfer salts and Cu(II) complexes derived from some carboxylic acids

Yıl 2017, , 137 - 152, 29.09.2017
https://doi.org/10.25092/baunfbed.340589

Öz

In this study  the proton transfer salts (Hamp)+(Hpyzdc)-
(1)
 and (Hamp)+(tga)- (2)
have been obtained from the reaction of
2-amino-3-methylpyridine (amp) with 1,4-pyrazine-2,3-dicarboxylic acid (H2pyzdc)
and thioglycolic acid (Htga), respectively.
Subsequent reaction of the salts (1
and 2) with [Cu(CH3COO)]2.2H2O
leads to the formation of metal complexes
(Hamp)2[Cu3(pyzdc)4(H2O)6].8H2O
(3) and (Hamp)2[Cu(tga)2(H2O)2].2H2O
(4). The structures of salts were
characterized by  1H and  13C-NMR, FT-IR and UV-Vis spectra
and elemental analysis methods.  The
structures of complexes
which cannot obtain single crystals have been proposed by evaluating the
results obtained from FT-IR, UV-Vis, ICP-OES, magnetic susceptibility and
elemental analysis techniques.

Kaynakça

  • Desiraju, G.R., A bond by any other name, Angewandte Chemie, 50, 52–59 (2011).
  • Kojić-Prodić, B. and Molčanov, K., The Nature of Hydrogen Bond: New Iinsights Into Old Theories. Acta Chimica Slovenica, 55, 692–708 (2008).
  • Steiner, T., The hydrogen bond in the solid state, Angewandte Chemie International Edition, 41, 48–76 (2002).
  • Braga, D., Grepioni, F. and Novoa, J.J., Inter-anion O–H–••• O–hydrogen bond like interactions: the breakdown of the strength–length analogy, Chemical Communication, 18, 1959–1960, (1998).
  • Fazil, S., Ravindran, R., Devi, A.S. and Bijili, B.K., Structural studies of 1-phenyl-2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium-2[(2-carboxyphenyl)-disulfanyl]-benzoate, Journal of Molecular Structure, 1021, 147–152, (2012).
  • Majerz, I. and Olovsson, I., Influence of proton transfer on the geometry of the donor and acceptor in NHN+ hydrogen bonds, Journal of Molecular Structure, 976, 11–18, (2010).
  • Özdemir, N. Structural and spectroscopic characterization of 2-mesityl-1H-benzo[d]imidazol-3-ium chloride: A combined experimental and theoretical analysis, Spectrochimica Acta, Part A, 91, 51–60, (2012).
  • Shehab, O.R. and Mansour, A.M. Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Molecular structures, spectral, and DFT studiesJ. Mol. Struct., 1093, 186–194, (2015).
  • Rzokee, A.A. and Ahmad, A., Synthesis, spectroscopic studies and thermal analysis of charge-transfer complex of 2,20-bipyridine with 4-hydroxybenzoic acid in different polar solvents, Journal of Molecular Structure, 1076, 453–460, (2014).
  • Refat, M.S., Adam, A.M.A. and Saad, H.A., Utility of charge-transfer complexation for the assessment of macrocyclic polyethers: Spectroscopic, thermal and surface morphology characteristics of two highly crown ethers complexed with acido acceptors, J. Mol. Struct., 1085, 178–190, (2015).
  • Gopi, R., Ramanathan, N. and Sundararajan, K., Hydrogen-bonded complexes of acetylene and acetonitrile: A matrix isolation infrared and computational study, Journal of Molecular Structure, 1083, 364–373, (2015).
  • Weiss, N.M., Waller, A.W. and Phillips, J.A., Infrared spectrum of CH3CN–HCl in solid neon, and modeling matrix effects in CH3CN–HCl and H3N–HCl, Journal of Molecular Structure, 1105, 341–349, (2016).
  • Perpetuo, G.J. and Janczak, J., Structural and spectroscopic characterization of 1-(diaminomethylene) thiouron-1-ium benzoate and bis(1-(diaminomethylene)-thiouron-1-ium) phthalate trihydrate, Journal of Molecular Structure, 1105, 434–443, (2016).
  • Dimitrova, Y. and Daskalova, L.I. Solvent effects on vibrational spectra of hydrogen-bonded complexes of propanedinitrile (malononitrile) and dimethyl sulfoxide (DMSO): Ab initio and DFT studies, Journal of Molecular Structure Theochem, 823, 65–73, (2007).
  • Al-Ahmary, K.M., Habeeb, M. and Al-Solmy, E.A., Spectroscopic studies of the hydrogen bonded charge transfer complex of 2-aminopyridine with π-acceptor chloranilic acid in different polar solvents, Journal of Moecular Liquids, 162, 129–134, (2011).
  • Alexeev, Y.E., Kharisov, B.I., Hermandez, T.C. and Garnovski, A.D., Coordination motifs in modern supramolecular chemistry, Coordination Chemistry Review, 254, 794–831, (2010).
  • Stepanovs, D., Jure, M. and Mishnev, A., Preparation and crystal structure of sildenafil salicylate, Mendeleev Communication, 25, 49–50, (2015).
  • Vepuri, S.B., Devarajegowda, H.C. and Soliman, M.E. Synthesis, characterization and molecular modelling of a novel dipyridamole supramolecule e X-ray structure, quantum mechanics and molecular dynamics study to comprehend the hydrogen bond structure reactivity relationship, Journal of Molecular Structure, 1105, 194–204, (2016).
  • Lopes Jesus, A.J. and Redinha, J.S., Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives, Journal of Physical Chemistry A, 115, 14069, (2011).
  • Kochanek, S.E., Clymer, T.M. Pakkala, V.S., Hebert, S.P., Reeping, K., Firestine, S.M. and Evanseck, J.D., Intramolecular Charge-Assisted Hydrogen Bond Strength in Pseudochair Carboxyphosphate, Journal of Physical Chemistry B, 119, 1184, (2015).
  • Yuge, T., Sakai, T., Kai, N., Hisaki, M. and Tohnai, N., Topological Classification and Supramolecular Chirality of 21-Helical Ladder-Type Hydrogen-Bond Networks Composed of Primary Ammonium Carboxylates: Bundle Control in 21-Helical Assemblies, European Journal of Chemistry, 14, 2984–2993, (2008).
  • Lemmerer, A., Two-Dimensional Hydrogen-Bonding Patterns in a Series of Salts of Terephthalic Acid and the Cyclic Amines CnH2n−1NH2, n = 3, 4, 5, 6, 7, 8, and 12, Crystal Growth and Design, 11, 583–593, (2011).
  • Deng, Z.-P., Huo, L.-H., Li, M.-S., Zhang, L.-W., Zhu, Z.-B., Zhao, H. and Gao, S., Syntheses, structures, and luminescent properties of silver (I) complexes constructed from ortho-hydroxyl arenesulfonic acids, Crystal Growth and Design, 11, 3090–3100, (2011).
  • Yang, G., Zhu, H.-G., Liang, B.-H. and Chen, X.-M., Syntheses and crystal structures of four metal–organic co-ordination networks constructed from cadmium(II) thiocyanate and nicotinic acid derivatives with hydrogen bond, Journal of Chemical Society, Dalton Transactions, 580–585, (2001).
  • Milacic, V., Chen, D., Giovagnini, L., Diez, A., Fregona, D. and Dou, Q.P., Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity, Toxicology Applied Pharmacology, 231, 24–33, (2008).
  • Dendrinou-Samara, C., Tsotsou, G., Ekateriniadou, L.V., Kortsaris, A.H., Raptopoulou, C.P., Terzis, A., Kyriakidis, D.A. and Kessissoglou, D.P., Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions, Journal of Inorganic Biochemistry, 71, 171–179, (1998).
  • Yenikaya, C., Büyükkıdan, N., Sarı, M., Keşli, R., İlkimen, H., Bülbül, M., and Büyükgüngör, O., Synthesis, characterization, and biological evaluation of Cu(II) complexes with the proton transfer salt of 2,6-pyridinedicarboxylic acid and 2-amino-4-methylpyridine, Journal of Coordination Chemistry, 64,19, 3353–3365, (2011).
  • Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan, C., Korkmaz, T. and Süzen, Y., Synthesis, characterization and biological activities of metal(II)dipicolinate complexes derived from pyridine-2,6-dicarboxylic acid and 2-(piperazin-1-yl)ethanol, Journal of Molecular Structure, 1101, 139-146, (2015).
  • Büyükkıdan, N., Yenikaya, C., İlkimen, H., Karahan, C., Darcan and Şahin, E., Synthesis, Characterization, and Antimicrobial Activity of a Novel Proton Salt and Its Cu(II) Complex, Russian Journal of Coordination Chemistry, 39, 96–103, (2013).
  • Lazarou, K. N., Perlepes, S. P., Psycharis, V., Raptopoulou, C. P., Synthetic study of the ternary copper(II)/maleamate(-1)/1,10- phenanthroline reaction system: Mononuclear, dinuclear and polymeric complexes, Polyhedron, 27, 2131–2142, (2008).
  • Ashok, M., Prasad, A. V. S. S., Ravinder, V. Synthesis, spectral studies and catalytic activity of ruthenium(II) complexes with organic amide ligands, Journal of the Brazilian Chemical Society, 18(8), 1492–1499, (2007).
  • Shah, A. I., Shukla, H. M., Shah, P. J., Raj, D. S. Novel co-ordination polymers of 8-hydroxyquinoline, Elixir Chemical Physics, 44, 7378–7381, (2012).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Bölüm Makale
Yazarlar

Nurgün Büyükkıdan

Nedime Demir Bu kişi benim

Bülent Büyükkıdan

Yayımlanma Tarihi 29 Eylül 2017
Gönderilme Tarihi 29 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Büyükkıdan, N., Demir, N., & Büyükkıdan, B. (2017). Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 137-152. https://doi.org/10.25092/baunfbed.340589
AMA Büyükkıdan N, Demir N, Büyükkıdan B. Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. Ekim 2017;19(2):137-152. doi:10.25092/baunfbed.340589
Chicago Büyükkıdan, Nurgün, Nedime Demir, ve Bülent Büyükkıdan. “Bazı Karboksilik Asitlerden Elde Edilen Proton Transfer tuzlarının Ve Cu (II) Komplekslerinin Sentezi Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, sy. 2 (Ekim 2017): 137-52. https://doi.org/10.25092/baunfbed.340589.
EndNote Büyükkıdan N, Demir N, Büyükkıdan B (01 Ekim 2017) Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 2 137–152.
IEEE N. Büyükkıdan, N. Demir, ve B. Büyükkıdan, “Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu”, BAUN Fen. Bil. Enst. Dergisi, c. 19, sy. 2, ss. 137–152, 2017, doi: 10.25092/baunfbed.340589.
ISNAD Büyükkıdan, Nurgün vd. “Bazı Karboksilik Asitlerden Elde Edilen Proton Transfer tuzlarının Ve Cu (II) Komplekslerinin Sentezi Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/2 (Ekim 2017), 137-152. https://doi.org/10.25092/baunfbed.340589.
JAMA Büyükkıdan N, Demir N, Büyükkıdan B. Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. 2017;19:137–152.
MLA Büyükkıdan, Nurgün vd. “Bazı Karboksilik Asitlerden Elde Edilen Proton Transfer tuzlarının Ve Cu (II) Komplekslerinin Sentezi Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 19, sy. 2, 2017, ss. 137-52, doi:10.25092/baunfbed.340589.
Vancouver Büyükkıdan N, Demir N, Büyükkıdan B. Bazı karboksilik asitlerden elde edilen proton transfer tuzlarının ve Cu (II) komplekslerinin sentezi ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. 2017;19(2):137-52.