Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi

Yıl 2017, , 177 - 191, 29.09.2017
https://doi.org/10.25092/baunfbed.340613

Öz

Çapraz
bağlı poliakrilamid (PAAm) hidrojelleri; fiziksel özellikleri üzerine çapraz
bağlayıcı türü etkisinin incelenmesi amacıyla sentezlenmiştir. Bu amaçla;
N,N’-metilenbisakrilamid (MBA), trietilen glikol dimetakrilat (TEGDMA),
glutaraldehit (GLU), divinilsülfon (DVS), N,N’-Diallil L-ltartardiamit (DATD)
ve epiklorhidrin (ECH;) çapraz bağlayıcılar olarak seçilmiş ve bu hidrojeller
sırasıyla PAAm-MBA, PAAm-TEGDMA, PAAm-GLU, PAAm-DVS,
PAAm-DATD, PAAm-ECH olarak isimlendirilmiştir. Tüm çapraz bağlayıcılar
için nçapraz bağlayıcı/nmonomer oranı=%2.5 olarak
sabitlenmiştir. Amonyumpersülfat (APS) ve N,N,N’,N’-tetrametiletilendiamin
(TEMED); redoks başlatıcısı-hızlandırıcısı olarak seçilmiş ve PAAm
hidrojelleri; çapraz bağlayıcıların bulunduğu ortamda monomerlerin radikalik
polimerleşmesi ile hazırlanmıştır.
PAAm hidrojellerinin şişme ve
difüzyon parametrelerinin hesaplanabilmesi amacıyla kinetik şişme çalışmaları;
deiyonize suda (DS) ve 25 oC’de gerçekleştirilmiştir.
Deneysel şişme verileri; şişme prosesinin 2o’den
kinetiğe uyduğunu göstermiştir. PAAm hidrojellerinin şişme dereceleri;
PAAm-ECH>PAAm-DVS>PAAm-MBA=PAAm-DATD>PAAm-GLU>PAAm-TEGDMA olarak
bulunmuştur.
PAAm hidrojelleri; su
moleküllerinin hidrojellere difüzyon türünün Fick tipi olmayan difüzyon türü
olduğunu gösteren ve değeri 0.57 ve 0.80 aralığında değişen sayılara (n)
sahiptir. PAAm
hidrojellerinin çapraz bağlar arası ortalama mol kütlesi (



















), çapraz bağ yoğunluğu (q) ve gözeneklilik (P) gibi ağ yapı
parametreleri hesaplanmıştır. Denge şişme çalışmaları; protein (sığır serumu albumini, BSA),
bakteriyel polisakkarit (dekstran, DEX), vitamin (nikotinamid, NAD) ve ilaç
etken maddesi (8-hidroksi 7-iyodokinolin-5-sülfonik asit, HKSA) çözeltilerinde
de yapılmıştır. Şişme ve ağ yapı parametreleri, PAAm hidrojelleri; yapısı protein, karbohidrat,
vitamin ve ilaç etken moleküllerine benzeyen moleküller ile etkileştirildiğinde
şişme ve adsorpsiyon özelliklerinin tahmin edilmesinde yol gösterici olacaktır. 

Kaynakça

  • Friedman, M., Chemistry, biochemistry, and safety of acrylamide. A review, Journal of Agricultural and Food Chemistry, 51, 4504−4526, (2003).
  • Tornqvist, M., Fred C., Haglung, J, Helleberg, H., Paulsson, B., Rydberg, P., Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications, Journal of Chromatography B, 85, 172-180, (2002).
  • Bodet, E.P., Salard, I., Przybylski, C., Gonnet, F., Gomila, C., Ausseil, J., Daniel, R., Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis, Analytical and Bioanalytical Chemistry, 409, 1257-1269, (2017).
  • Raj, P., Batchelor , W., Blanco, A., Fuente, E., Negro, C., Garnier, G., Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation, Journal of Colloid and Interface Science, 481, 158–167, (2016).
  • Inayat, F., Cheema, A.R., Virk, H.H., Yoon, D.J., Farooq, S., Manan, A. Nonthrombotic pulmonary embolism: a potential complication of polyacrylamide hydrogel cosmetic injection, Case Reports in Medicine, 2016, ID 1397434, (2016).
  • Abdel-Galil, E.A., Sharaf El-Deen, G.E. El-Aryan, Y.F. Khalil, M., Preparation of hybrid ion exchanger based on acrylamide for sorption of some toxic metal ions from aqueous waste solutions, Russian Journal of Applied Chemistry, 89, 467–479, (2016).
  • Zhu, G., Liu, J., Yin, J., Li, Z., Ren, B., Sun, Y., Wan, P., Liu, Y., Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution, Chemical Engineering Journal, 288, 390-398, (2016).
  • Mohan, M.Y., Murthy, K.S.P., Sreeramulu, J., Raju, K.M., Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate), Journal of Applied Polymer Science, 98, 302-314, (2005).
  • Ekici, S., Saraydin, D., Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release, Drug Delivery, 11, 381-388, (2004).
  • Ekici, S., Isikver, Y., Saraydin, D., Poly(acrylamide-sepiolite) composite hydrogels: Preparation, swelling and dye adsorption properties, Polymer Bulletin, 57, 231-241, (2006).
  • Ekici, S., Guntekin, G., Saraydin, D., The removal of textile dyes with crosslinked chitosan-polyacrylamide adsorbent hydrogels, Polymer-Plastics Technology and Engineering, 50, 1247-1255, (2011).
  • Raju, M.P., Raju, K.M., Synthesis and water absorbency of crosslinked superabsorbent polymers, Journal of Applied Polymer Science, 85, 1795-1801, (2001).
  • Chauhan, G.S.,Chauhan, S., Chauhan, K., Sen, U., Synthesis and characterization of acrylamide and 2-hydroxylpropyl methacrylate hydrogels for specialty applications, Journal of Applied Polymer Science, 99, 3040–3049, (2006).
  • Wang, X., Tang, X., Feng, P., Li, X., Zhao, C., Chen, W., Zheng, H., A novel preparation method of polyaluminum chloride/polyacrylamide composite coagulant: Composition and characteristic, Journal of Applied Polymer Science, 134, Article Number: 44500, (2017).
  • Alam, A., Kuan, H.C., Zhao, Z., Xu, J., Ma, J., Novel polyacrylamide hydrogels by highly conductive, water-processable graphene, Composites Part A-Applied Science and Manufacturing, 93, 1-9, (2017).
  • Adibnia, V., Taghavi, S.M., Hill, R.J. Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels, Rheologica Acta, 56, 123-134, (2017).
  • Yang, Y., Song, S., Zhao, Z., Grapheneoxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 513, 315-324, (2017).
  • Masalovich, M.S., Shevtsova, Y.A., Ivanova, A.G., Zagrebelnyy, O.A., Kruchinina, I.Y., Shilova, O.A. Electrochemical synthesis of polythiophene-polyacrylamide composite coatings used for pseudo capacitors, Glass Physics and Chemistry, 42, 635-636, (2016).
  • Li, Z., Su, Y., Haq, M.A., Xie, B., Wang, D., Konjac glucomannan/polyacrylamide bicomponent hydrogels: Self-healing originating from semi-interpenetrating network, Polymer, 103, 146-151, (2016).
  • Saraydin, D., Isikver, Y., Karadag, E., Sahiner, N., Guven, O., In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids, Nuclear Instruments and Methods in Physics Research, B 187; 340–344, (2002).
  • Yang, C., Zhou, X., Liu, Y., Wang, J., Tian, L., Zhang, Y., Hu, X., Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, Journal of Applied Polymer Science, 133, DOI: 10.1002/app.43851, (2016). Duan, Z., Zhong, M., Shi, F., Xie, X. Transparenth-BN/polyacrylamide nano composite hydrogels with enhanced mechanical properties, Chinese Chemical Letters, 27, 1490–1494, (2016).
  • Wang, D., Wang, W.J., Li, B.G., Semibatch RAFT polymerization for branched polyacrylamide production: Effect of divinyl monomer feeding policies, AICHE Journal, 59, 1322-1333, (2013).
  • Shen, J., Yan, B., Li, T., Long, Y., Li, N., Ye, M., Study on graphene-oxide-based polyacrylamide composite hydrogels, Composites Part A-Applied Science and Manufacturing, 43, 1476-1481, (2012).
  • Zhu, A., Shi, Z., Jin, J., Li, G., Jiang, J., Synthesis and properties of polyacrylamide-based conducting gels with enhanced mechanical strength, Journal of Macromolecular Science Part B-Physics, 51, 2183-2190, (2012).
  • Karadag, E., Kundakci, S., Durukan, H.B., Uzum, O.B., Water sorption studies and adsorptive features of highly swollen acrylamide-based ternary hydrogels for uranyl ions, Polymer-Plastics Technology and Engineering, 52, 783–794, (2013).
  • Xie, Y., Huang, H., Preparation and characterization of an amphiphilic macro photoinitiatorbased on 2-hydroxyl-2-methyl-1-phenylpropanone, Journal of Applied Polymer Science, 133, Article Number:43910, (2016).
  • Hoshoudy, A.E., Desouky, S., Al-sabagh, A., El-kady, M., Betiha, M., Mahmoud, S., Synthesis and characterization of polyacrylamide crosslinked copolymer for enhanced oil recovery and rock wettability alteration, International Journal of Oil, Gas and Coal Engineering, 3, 47-59, (2015).
  • Peppas, N.A., Zach, H.J., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Advanced Materials, 18, 1345-1360, (2006).
  • Peppas, N.A., Ritger, P.L., A simple equation for description of solute release I. Fickian and Non-Fickian from non-swellable devices in the form of slabs, spheres, cylinders or disc, Journal of Controlled Release, 5, 23-26, (1987).
  • Bajpai, A.K., Bajpai, J., Shukla, S., Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains, Reactive and Functional Polymers, 50, 9-21, (2001).
  • Frish, H.L., Sorption and transport in glassy polymers, Polymer Engineering and Science, 20, 2-13, (1980).
  • Peppas, N.A., Franson, N.M., The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, Journal of Polymer Science, 21, 983-997, (1983).
  • Migneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C., Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, Biotechniques, 37,798-802, (2004).
  • Peppas, N.A., Franson, N.M., The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, Journal of Polymer Science, 21, 983–997, (1983).
  • Saraydin, D., Karadag, E., Sahiner, N., Guven, O. Incorporation of malonic acid into acrylamide hydrogel by radiation technique and its effect on swelling behavior, Journal of Material Science, 37, 3217–3223, (2002).

Evaluation of polyacrylamide hydrogels clamped with different crosslinkers

Yıl 2017, , 177 - 191, 29.09.2017
https://doi.org/10.25092/baunfbed.340613

Öz

Crosslinked
polyacrylamide (PAAm) hydrogels were synthesized to investigate the effect of
crosslinker type onto pysical properties of PAAM gels. With this aim; N,N’-methylenebis
acrylamide (MBA), t
riethylene glycol dimethacrylate
(TEGDMA), glutaraldehyde (GLU), 
divinyl
sulfone (DVS),
N,N′-diallyl L-tartardiamide (DATD), and epichlorohydrin (ECH)  were selected as crosslinkers and these
hydrogels were called as PAAm-MBA, PAAm-TEGDMA, PAAm-GLU, PAAm-DVS, PAAm-DATD,
and PAAm-ECH, respectively. The ratio of ncrosslinker/nmonomer
was fixed as 2.5% for all crosslinkers.
PAAMs were prepared by radical
polymerization of monomers in presence of crosslinkers  and redox initiator-accelerator, i.e.,
ammonium persulphate (APS) and N,N,N′,N′-tetramethylethylenediamine
(TEMED).
Kinetic swelling studies of
hydrogels were carried out in deionize water (DW)
at 25 C for calculating swelling and diffusion parameters of the PAAms. Experimental data of swelling suggest clearly
that the swelling processes obey second-order kinetics. Swelling degrees of the
PAAms were found as
PAAm-ECH>PAAm-DVS>PAAm-MBA=PAAm-DATD>PAAm-GLU>PAAm-TEGDMA.
PAAms has numbers (n) between 0.57 and 0.80 indicating
type of diffusion of water molecules to the hydrogels is non-Fickian type. Network
parameters of PAAMs such as average molecular weight between crosslinks (



















), crosslink density (q), and
porosity (P) were calculated.
Equilibrium swelling studies were also
realized in solutions of protein (bovine serum albumine, BSA), bacterial
polysaccharide (dextran, DEX), vitamine (nicotineamide, NAD), and drug
(8-hydroxy-7-iodoquinoline-5-sulfonic acid, HKSA). Swelling and network
parameters of the PAAms will be guide to estimate of swelling and adsorption
behaviours of PAAm hydrogels clamped with different crosslinkers when they are
interacted with molecules such as protein, polysaccharide, vitamine, and drug
molecules.

Kaynakça

  • Friedman, M., Chemistry, biochemistry, and safety of acrylamide. A review, Journal of Agricultural and Food Chemistry, 51, 4504−4526, (2003).
  • Tornqvist, M., Fred C., Haglung, J, Helleberg, H., Paulsson, B., Rydberg, P., Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications, Journal of Chromatography B, 85, 172-180, (2002).
  • Bodet, E.P., Salard, I., Przybylski, C., Gonnet, F., Gomila, C., Ausseil, J., Daniel, R., Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis, Analytical and Bioanalytical Chemistry, 409, 1257-1269, (2017).
  • Raj, P., Batchelor , W., Blanco, A., Fuente, E., Negro, C., Garnier, G., Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation, Journal of Colloid and Interface Science, 481, 158–167, (2016).
  • Inayat, F., Cheema, A.R., Virk, H.H., Yoon, D.J., Farooq, S., Manan, A. Nonthrombotic pulmonary embolism: a potential complication of polyacrylamide hydrogel cosmetic injection, Case Reports in Medicine, 2016, ID 1397434, (2016).
  • Abdel-Galil, E.A., Sharaf El-Deen, G.E. El-Aryan, Y.F. Khalil, M., Preparation of hybrid ion exchanger based on acrylamide for sorption of some toxic metal ions from aqueous waste solutions, Russian Journal of Applied Chemistry, 89, 467–479, (2016).
  • Zhu, G., Liu, J., Yin, J., Li, Z., Ren, B., Sun, Y., Wan, P., Liu, Y., Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution, Chemical Engineering Journal, 288, 390-398, (2016).
  • Mohan, M.Y., Murthy, K.S.P., Sreeramulu, J., Raju, K.M., Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate), Journal of Applied Polymer Science, 98, 302-314, (2005).
  • Ekici, S., Saraydin, D., Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release, Drug Delivery, 11, 381-388, (2004).
  • Ekici, S., Isikver, Y., Saraydin, D., Poly(acrylamide-sepiolite) composite hydrogels: Preparation, swelling and dye adsorption properties, Polymer Bulletin, 57, 231-241, (2006).
  • Ekici, S., Guntekin, G., Saraydin, D., The removal of textile dyes with crosslinked chitosan-polyacrylamide adsorbent hydrogels, Polymer-Plastics Technology and Engineering, 50, 1247-1255, (2011).
  • Raju, M.P., Raju, K.M., Synthesis and water absorbency of crosslinked superabsorbent polymers, Journal of Applied Polymer Science, 85, 1795-1801, (2001).
  • Chauhan, G.S.,Chauhan, S., Chauhan, K., Sen, U., Synthesis and characterization of acrylamide and 2-hydroxylpropyl methacrylate hydrogels for specialty applications, Journal of Applied Polymer Science, 99, 3040–3049, (2006).
  • Wang, X., Tang, X., Feng, P., Li, X., Zhao, C., Chen, W., Zheng, H., A novel preparation method of polyaluminum chloride/polyacrylamide composite coagulant: Composition and characteristic, Journal of Applied Polymer Science, 134, Article Number: 44500, (2017).
  • Alam, A., Kuan, H.C., Zhao, Z., Xu, J., Ma, J., Novel polyacrylamide hydrogels by highly conductive, water-processable graphene, Composites Part A-Applied Science and Manufacturing, 93, 1-9, (2017).
  • Adibnia, V., Taghavi, S.M., Hill, R.J. Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels, Rheologica Acta, 56, 123-134, (2017).
  • Yang, Y., Song, S., Zhao, Z., Grapheneoxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 513, 315-324, (2017).
  • Masalovich, M.S., Shevtsova, Y.A., Ivanova, A.G., Zagrebelnyy, O.A., Kruchinina, I.Y., Shilova, O.A. Electrochemical synthesis of polythiophene-polyacrylamide composite coatings used for pseudo capacitors, Glass Physics and Chemistry, 42, 635-636, (2016).
  • Li, Z., Su, Y., Haq, M.A., Xie, B., Wang, D., Konjac glucomannan/polyacrylamide bicomponent hydrogels: Self-healing originating from semi-interpenetrating network, Polymer, 103, 146-151, (2016).
  • Saraydin, D., Isikver, Y., Karadag, E., Sahiner, N., Guven, O., In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids, Nuclear Instruments and Methods in Physics Research, B 187; 340–344, (2002).
  • Yang, C., Zhou, X., Liu, Y., Wang, J., Tian, L., Zhang, Y., Hu, X., Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, Journal of Applied Polymer Science, 133, DOI: 10.1002/app.43851, (2016). Duan, Z., Zhong, M., Shi, F., Xie, X. Transparenth-BN/polyacrylamide nano composite hydrogels with enhanced mechanical properties, Chinese Chemical Letters, 27, 1490–1494, (2016).
  • Wang, D., Wang, W.J., Li, B.G., Semibatch RAFT polymerization for branched polyacrylamide production: Effect of divinyl monomer feeding policies, AICHE Journal, 59, 1322-1333, (2013).
  • Shen, J., Yan, B., Li, T., Long, Y., Li, N., Ye, M., Study on graphene-oxide-based polyacrylamide composite hydrogels, Composites Part A-Applied Science and Manufacturing, 43, 1476-1481, (2012).
  • Zhu, A., Shi, Z., Jin, J., Li, G., Jiang, J., Synthesis and properties of polyacrylamide-based conducting gels with enhanced mechanical strength, Journal of Macromolecular Science Part B-Physics, 51, 2183-2190, (2012).
  • Karadag, E., Kundakci, S., Durukan, H.B., Uzum, O.B., Water sorption studies and adsorptive features of highly swollen acrylamide-based ternary hydrogels for uranyl ions, Polymer-Plastics Technology and Engineering, 52, 783–794, (2013).
  • Xie, Y., Huang, H., Preparation and characterization of an amphiphilic macro photoinitiatorbased on 2-hydroxyl-2-methyl-1-phenylpropanone, Journal of Applied Polymer Science, 133, Article Number:43910, (2016).
  • Hoshoudy, A.E., Desouky, S., Al-sabagh, A., El-kady, M., Betiha, M., Mahmoud, S., Synthesis and characterization of polyacrylamide crosslinked copolymer for enhanced oil recovery and rock wettability alteration, International Journal of Oil, Gas and Coal Engineering, 3, 47-59, (2015).
  • Peppas, N.A., Zach, H.J., Khademhosseini, A., Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Advanced Materials, 18, 1345-1360, (2006).
  • Peppas, N.A., Ritger, P.L., A simple equation for description of solute release I. Fickian and Non-Fickian from non-swellable devices in the form of slabs, spheres, cylinders or disc, Journal of Controlled Release, 5, 23-26, (1987).
  • Bajpai, A.K., Bajpai, J., Shukla, S., Water sorption through a semi-interpenetrating polymer network (IPN) with hydrophilic and hydrophobic chains, Reactive and Functional Polymers, 50, 9-21, (2001).
  • Frish, H.L., Sorption and transport in glassy polymers, Polymer Engineering and Science, 20, 2-13, (1980).
  • Peppas, N.A., Franson, N.M., The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, Journal of Polymer Science, 21, 983-997, (1983).
  • Migneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C., Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, Biotechniques, 37,798-802, (2004).
  • Peppas, N.A., Franson, N.M., The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers, Journal of Polymer Science, 21, 983–997, (1983).
  • Saraydin, D., Karadag, E., Sahiner, N., Guven, O. Incorporation of malonic acid into acrylamide hydrogel by radiation technique and its effect on swelling behavior, Journal of Material Science, 37, 3217–3223, (2002).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Makale
Yazarlar

Sema Ekici

Meziyet Çetik Erkol Bu kişi benim

Yayımlanma Tarihi 29 Eylül 2017
Gönderilme Tarihi 29 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Ekici, S., & Çetik Erkol, M. (2017). Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 177-191. https://doi.org/10.25092/baunfbed.340613
AMA Ekici S, Çetik Erkol M. Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. Ekim 2017;19(2):177-191. doi:10.25092/baunfbed.340613
Chicago Ekici, Sema, ve Meziyet Çetik Erkol. “Farklı çapraz bağlayıcılar Ile hazırlanmış Poliakrilamid Hidrojellerinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, sy. 2 (Ekim 2017): 177-91. https://doi.org/10.25092/baunfbed.340613.
EndNote Ekici S, Çetik Erkol M (01 Ekim 2017) Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 2 177–191.
IEEE S. Ekici ve M. Çetik Erkol, “Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 19, sy. 2, ss. 177–191, 2017, doi: 10.25092/baunfbed.340613.
ISNAD Ekici, Sema - Çetik Erkol, Meziyet. “Farklı çapraz bağlayıcılar Ile hazırlanmış Poliakrilamid Hidrojellerinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/2 (Ekim 2017), 177-191. https://doi.org/10.25092/baunfbed.340613.
JAMA Ekici S, Çetik Erkol M. Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2017;19:177–191.
MLA Ekici, Sema ve Meziyet Çetik Erkol. “Farklı çapraz bağlayıcılar Ile hazırlanmış Poliakrilamid Hidrojellerinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 19, sy. 2, 2017, ss. 177-91, doi:10.25092/baunfbed.340613.
Vancouver Ekici S, Çetik Erkol M. Farklı çapraz bağlayıcılar ile hazırlanmış poliakrilamid hidrojellerinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2017;19(2):177-91.