Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures

Yıl 2017, , 89 - 104, 07.12.2017
https://doi.org/10.25092/baunfbed.363772

Öz

In
this study, the structural properties of isophorone derivatives with
π-conjugation obtained by aldol reactions have characterized by spectral
analyses such as FT-IR, 1H-NMR, and 13C-NMR.  The compounds have optimized using Density
Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground
state and the geometric parameters have compared with the results obtained by
X-ray Single Crystal diffraction technique. 
Also, the spectral results have examined along with calculated
vibrational frequencies, 1H-NMR, 13C-NMR chemical shift
values. To get information about the chemical stability of the compounds, some
of the structure parameters (ionization potential, electron affinity, electronegativity,
chemical hardness-softness, etc.) have been studied at the same theoretical
level.
Also, NLO properties and antioxidant
activities of the compounds have investigated by using DPPH free radical
scavenging, reducing power and metal chelating methods.
Spectral and
theoretical results are compatible with each other.

Kaynakça

  • Agency for toxic substances and disease registry (ATSDR), Toxicological profile for isophorone, Department of Health and Human Services, Public Health Service, Atlanta, GA, U.S., (1989).
  • Kataoka, H., Terada, Y., Inoue, Y. and Mitani, K., Determination of isophorone in food samples by solid-phase microextraction coupled with gas chromatography-mass spectrometry, Journal of Chromatography A, 1155, 1, 100-104, (2007).
  • Environmental health criteria 174:Isophorone, World Health Organization for the International Programme on Chemical Safety, Geneva, WHO, (1995).
  • Samimi, B., Exposure to isophorone and other organic solvents in a screen printing plant, The American Industrial Hygiene Association Journal, 43, 1, 43-48, (1982).
  • Shackelford, W.M. and Keith, L.H., Frequency of organic compounds identified in water, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga., (1976).
  • Horng, J.Y. and Huang, S.D., Determination of the semi-volatile compounds nitrobenzene, isophorone, 2, 4-dinitrotoluene and 2, 6-dinitrotoluene in water using solid-phase microextraction with a polydimethylsiloxane-coated fibre, Journal of Chromatography A, 678, 2, 313-318, (1994).
  • Sasaki, K., Tagata, H., Kawakami, H., Nagasaki, T., Nemoto, S. and Maitani, T., Determination of isophorone in foods, Journal of the Food Hygienic Society of Japan, 46, 1, 28-32, (2005).
  • Camarasa, J.G. and Serra-Baldrich, E., Allergic dermatitis caused by gold. Description of a new case, Medicina Cutanea Ibero-Latino-Americana, 17, 3, 187-188, (1989).
  • Rademaker, M., Occupational epoxy resin allergic contact dermatitis, Australasian Journal of Dermatology, 41, 4, 222-224, (2000).
  • Clarke, C. W. and Aldons, P. M., Isophorone diisocyanate induced respiratory disease (IPDI), Australian and New Zealand Journal of Medicine, 11, 3, 290-292, (1981).
  • Bucher, J.R., Huff, J. and Kluwe, W. M., Toxicology and carcinogenesis studies of isophorone in F344 rats and B6C3F1 mice, Toxicology, 39, 2, 207-219, (1986).
  • Yamada, Y., Yoshikawa, N., Sasai, H. and Shibasaki, M., Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones, Angewandte Chemie International Edition, 36, 17, 1871-1873, (1997).
  • Kergomard, A., Renard, M.F. and Veschambre, H., Microbiological reduction of alpha, beta-unsaturated ketones by Beauveria sulfurescens, The Journal of Organic Chemistry, 47, 5, 792-798, (1982).
  • Conti, M., Cyclopentenone: a special moiety for anticancer drug design, Anti-cancer Drugs, 17, 9, 1017-1022, (2006).
  • Stoe & Cie, X-AREA (Version 1.18), Stoe & Cie GmbH, Darmstadt, Germany, (2002). Sheldrick, G.M., SHELXS-97, Program for the Solution of Crystal Structures, University of Gottingen, (1997).
  • Sheldrick, G.M., SHELXL-2014/7: Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, (2014).
  • Farrugia, L.J., WinGX suite for small-molecule single-crystal crystallography, Journal of Applied Crystallography, 32, 4, 837-838, (1999).
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, (2009).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • a) Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A, 38, 6, 3098-3100, (1988). b) Becke, A.D., Density‐functional thermochemistry. I, The effect of the exchange‐only gradient correction, The Journal of Chemical Physics, 96, 3, 2155-2160, (1992).
  • Ditchfield, R., Hehre, W.J. and Pople, J.A, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics, 54, 2, 724-728, (1971).
  • Lee, C., Yang, W. and Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, 2, 785-789, (1988).
  • Kowalczyk, I., Bartoszak-Adamska, E., Jaskólski, M., Dega-Szafran, Z. and Szafran, M, Structure of 1H-2-oxo-2, 3-dihydroimidazo [1,2-a] pyridinium perchlorate studied by X-ray diffraction, DFT calculations and by FTIR and NMR spectroscopy, Journal of Molecular Structure, 976, 1, 119-128, (2010).
  • Merrick, J.P., Moran, D. and Radom, L., An evaluation of harmonic vibrational frequency scale factors, The Journal of Physical Chemistry A, 111, 45, 11683-11700, (2007).
  • Cheeseman, J.R., Trucks, G.W., Keith, T.A. and Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors, The Journal of Chemical Physics, 104, 14, 5497-5509, (1996).
  • a) Koopmans, T., Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica, 1, 1, 104-113, (1933). b) Vektariene, A., Vektaris, G. and Svoboda, J., A theoretical approach to the nucleophilic behavior of benzofused thieno [3,2-b] furans using DFT and HF based reactivity descriptors, Arkivoc: Online Journal of Organic Chemistry, vii, 311-329 (2009).
  • Mulliken, R. S., A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities, The Journal of Chemical Physics, 2, 11, 782-793, (1934).
  • a) Pearson, R.G., Hard and soft acids and bases, Journal of the American Chemical Society, 85, 22, 3533-3539, (1963). b) Pearson, R.G., Hard and soft acids and bases, HSAB, part 1: Fundamental principles, Journal of Chemical Education, 45, 9, 581-587, (1968). c) Pearson, R.G., Maximum chemical and physical hardness, Journal of Chemical Education, 76, 2, 267-270, (1999).
  • Pearson, R.G., Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences, 83, 22, 8440-8441, (1986).
  • Parr, R.G. and Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society, 105, 26, 7512-7516, (1983).
  • Chattaraj, P.K. and Roy, D.R., Update 1 of: Electrophilicity index, Chemical Reviews, 107, 9, PR46–PR74, (2007).
  • Hernández-Paredes, J., Glossman-Mitnik, D., Duarte-Moller, A. and Flores-Holguín, N., Theoretical calculations of molecular dipole moment, polarizability, and first hyperpolarizability of glycine–sodium nitrate, Journal of Molecular Structure: THEOCHEM, 905, 1, 76-80, (2009).
  • Prashanth, J., Ramesh, G., Naik, J.L., Ojha, J.K., Reddy, B.V. and Rao, G.R., Molecular structure, vibrational analysis and first order hyperpolarizability of 4-methyl-3-nitrobenzoic acid using density functional theory, Optics and Photonics Journal, 5, 91-107, (2015).
  • a) Kleinman, D.A., Nonlinear dielectric polarization in optical media, Physical Review, 126, 6, 1977-1979, (1962). b) Ramalingam, S., Karabacak, M., Periandy, S., Puviarasan, N. and Tanuja, D., Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 207-220, (2012).
  • Suresh, S., Gunasekaran, S. and Srinivasan, S., Spectroscopic (FT-IR, FT-Raman, NMR and UV–Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 130-141, (2014).
  • Fatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. and Velmurugan, D, 3-[(E)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one, Acta Crystallographica Section E: Structure Reports Online, 69, 7, o1121-o1121, (2013).
  • Cha, J.H., Lee, J.K., Min, S.J., Cho, Y.S. and Park, J., (E)-2,2′-[3-(4-Chlorophenyl) prop-2-ene-1,1-diyl]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one), Acta Crystallographica Section E: Structure Reports Online, 69, 8, o1347-o1347, (2013).
  • Boulebd, H., Bouraiou, A., Bouacida, S., Merazig, H. and Belfaitah, A., 3-Anilino-5, 5-dimethylcyclohex-2-enone, Acta Crystallographica Section E: Structure Reports Online, 70, 3, o233-o234, (2014).
  • Allinger, N.L., Hirsch, J.A., Miller, M.A. and Tyminski, I.J., Conformational analysis, LXV, calculation by the Westheimer method of the structures and energies of a variety of organic molecules containing nitrogen, oxygen, and halogen, Journal of the American Chemical Society, 91, 2, 337-343, (1969).
  • Koleva, B.B. and Kolev, T., Monoclinic and triclinic polymorphs of 2-{5, 5-dimethyl-3-[2-(2, 4, 6-trimethoxyphenyl) vinyl] cyclohex-2-enylidene} malononitrile—Solid-state linear-polarized IR-spectroscopy, DFT calculations and vibrational analysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 3, 786-793, (2008).
  • Parveen, S., Al-Alshaikh, M.A., Panicker, C.Y., El-Emam, A.A., Salian, V.V., Narayana, B. and Van Alsenoy, C., Spectroscopic investigations and molecular docking study of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl) phenyl] prop-2-en-1-one using quantum chemical calculations, Journal of Molecular Structure, 1120, 317-326, (2016).
  • Silverstein, R.M., Webster, F.X., Kiemle, D.J. and Bryce, D.L, Spectrometric identification of organic compounds, 87, John Wiley & Sons, Hoboken, NJ, (2014).
  • Raj, P.S., Shoba, D., Ramalingam, S. and Periandy, S., Spectroscopic (FT-IR/FT-Raman) and computational (HF/DFT) investigation and HOMO/LUMO/MEP analysis on 1, 1-difluoro-2-vinyl-cyclopropane, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 293-302, (2015).
  • Coates, J., Interpretation of infrared spectra, a practical approach, in Meyers, R. A., (Ed), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 10815-10837, (2000).
  • James, C., Raj, A.A., Reghunathan, R., Jayakumar, V.S. and Joe, I.H., Structural conformation and vibrational spectroscopic studies of 2, 6‐bis (p‐N, N‐dimethyl benzylidene) cyclohexanone using density functional theory, Journal of Raman Spectroscopy, 37, 12, 1381-1392, (2006).
  • Erdik, E., Organik kimyada spektroskopik yöntemler, Gazi Büro Kitabevi, Ankara, 111, (2008).
  • Sathiyanarayanan, D.N., Vibrational spectroscopy theory and application, New Age International Publishers, New Delhi, 424, (2004).
  • Krishnakumar, V., Manohar, S. and Nagalakshmi, R., Crystal growth and characterization of N-hydroxyphthalimide (C8H5NO3) crystal, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1, 110-115, (2008).
  • Singh, N.P. and Yadav, R.A., Optics spectroscopy-vibrational studies of trifluoromethyl benzene derivatives I: 2-amino, 5-chloro and 2-amino, 5-bromo benzotrifluorides, Indian Journal of Physics, 75, 4, 347-356, (2001).
  • Brouwer, H. and Stothers, J.B., 13C-Nuclear magnetic resonance studies. XVI.,13C Spectra of some substituted acrylic acids and their methyl esters, A correlation of olefinic shieldings in α, β-unsaturated carbonyl systems, Canadian Journal of Chemistry, 50, 5, 601-611, (1972).
  • Francioso, O., Sanchez-Cortes, S., Tugnoli, V., Ciavatta, C., Sitti, L. and Gessa, C., Infrared, raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids, Applied Spectroscopy, 50, 9, 1165-1174, (1996).
  • Jacobsen, N.E., NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology, 29, John Wiley & Sons, Hoboken, NJ, (2007).
  • Eryılmaz, S., Gül, M., İnkaya, E., İdil, Ö. and Özdemir, N., Synthesis, crystal structure analysis, spectral characterization, quantum chemical calculations, antioxidant and antimicrobial activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d] isoxazole, Journal of Molecular Structure, 1122, 219-233, (2016).
  • Verma, A.K., Bishnoi, A. and Fatma, S., Synthesis, spectral analysis and quantum chemical studies on molecular geometry of (2E, 6E)-2, 6-bis (2-chlorobenzylidene) cyclohexanone: experimental and theoretical approaches, Journal of Molecular Structure, 1116, 9-21, (2016).
  • Balcı, M., Nükleer manyetik rezonans spektroskopisi, 36, ODTÜ Yayıncılık, Ankara, (2004).
  • Maache, S., Bendjeddou, A., Abbaz, T., Gouasmia, A. and Villemin, D., Molecular structure, hyperpolarizability, NBO and Fukui function analysis of a serie of 1, 4, 3, 5-oxathiadiazepane-4, 4-dioxides derived of proline, Der Pharmacia Lettre, 8, 11, 27-37, (2016).
  • Aihara, J.I., Reduced HOMO− LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons, The Journal of Physical Chemistry A, 103, 37, 7487-7495, (1999).
  • Günay, N., Pir, H. and Atalay, Y., L-Asparaginyum pikrat molekülünün spektroskopik özelliklerinin teorik olarak incelenmesi, Sakarya Üniversitesi Fen Edebiyat Dergisi, 1, 15-32, (2011).
  • Eşme A. and Güneşdoğdu Sağdınç, S., Bazı Sudan Boyalarının Lineer, Lineer Olmayan Optik Özellikleri ve Kuantum Kimyasal Parametreleri, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16, 1, 47-75, (2014).
  • Nakano, M., Fujita, H., Takahata, M. and Yamaguchi, K., Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure− property relation in nlo responses of fractal antenna dendrimers, Journal of the American Chemical Society, 124, 32, 9648-9655, (2002).
  • Prashanth, J., Ramesh, G., Naik, J.L., Ojha, J.K., Reddy, B.V. and Rao, G.R., Molecular structure, vibrational analysis and first order hyperpolarizability of 4-methyl-3-nitrobenzoic acid using density functional theory, Optics and Photonics Journal, 5, 3, 91-107, (2015).
  • Sajan, D., Joe, H., Jayakumar, V.S. and Zaleski, J. Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, Journal of Molecular Structure, 785, 1, 43-53, (2006).
  • Muthu, S. and Maheswari, J.U., Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 154-163, (2012).
  • Geskin, V.M., Lambert, C. and Brédas, J.L., Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups, Journal of the American Chemical Society, 125, 50, 15651-15658, (2003).
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C., Use of a free radical method to evaluate antioxidant activity, LWT-Food science and Technology, 28, 1, 25-30, (1995).
  • Oyaizu, M., Studies on products of browning reaction, The Japanese Journal of Nutrition and Dietetics, 44, 6, 307-315, (1986).
  • Decker, E.A. and Welch, B., Role of ferritin as a lipid oxidation catalyst in muscle food, Journal of Agricultural and Food Chemistry, 38, 3, 674-677, (1990).

Aldol türevi izoforan yapılarının sentezi, spektral karakterizasyonu, teorik analizi ve antioksidan aktiviteleri

Yıl 2017, , 89 - 104, 07.12.2017
https://doi.org/10.25092/baunfbed.363772

Öz

Bu çalışmada, aldol tepkimeleri ile elde edilen π konjugasyonuna sahip
izoforan türevlerinin yapısal özellikleri
FT-IR,
1H-NMR ve 13C-NMR gibi spektral analizler ile karakterize
edilmiştir. Yoğunluk Fonksiyoneli Teorisi (YFT/B3LYP) kullanılarak 6-311G(d,p)
baz seti ile taban durumunda optimize edilmiş ve geometrik parametreleri,
X-ışını Tek Kristal difraksiyon yöntemi ile gerçekleştirilen kristal yapı
analizinin sonuçları ile karşılaştırılmıştır. Ayrıca spektral sonuçlar, teorik
olarak hesaplanan titreşim frekansları, 1H-NMR ve 13C-NMR kimyasal kayma
değerleri ile birlikte incelenmiştir. 
Bileşiklerin kimyasal kararlılığı hakkında bilgi sahibi olabilmek için
bir takım yapı parametreleri (iyonlaşma potansiyeli, elektron ilgisi,  elektronegatiflik, kimyasal
sertlik-yumuşaklık, v.b.) kuramsal düzeyde incelenmiştir. Bileşiklerin NLO
özellikleri ve antioksidan aktiviteleri; DPPH serbest radikal giderme,
indirgeme gücü ve metal şelatlama metotları kullanılarak incelenmiştir.  Spektral ve kuramsal sonuçlar birbiriyle
uyumludur. 

Kaynakça

  • Agency for toxic substances and disease registry (ATSDR), Toxicological profile for isophorone, Department of Health and Human Services, Public Health Service, Atlanta, GA, U.S., (1989).
  • Kataoka, H., Terada, Y., Inoue, Y. and Mitani, K., Determination of isophorone in food samples by solid-phase microextraction coupled with gas chromatography-mass spectrometry, Journal of Chromatography A, 1155, 1, 100-104, (2007).
  • Environmental health criteria 174:Isophorone, World Health Organization for the International Programme on Chemical Safety, Geneva, WHO, (1995).
  • Samimi, B., Exposure to isophorone and other organic solvents in a screen printing plant, The American Industrial Hygiene Association Journal, 43, 1, 43-48, (1982).
  • Shackelford, W.M. and Keith, L.H., Frequency of organic compounds identified in water, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga., (1976).
  • Horng, J.Y. and Huang, S.D., Determination of the semi-volatile compounds nitrobenzene, isophorone, 2, 4-dinitrotoluene and 2, 6-dinitrotoluene in water using solid-phase microextraction with a polydimethylsiloxane-coated fibre, Journal of Chromatography A, 678, 2, 313-318, (1994).
  • Sasaki, K., Tagata, H., Kawakami, H., Nagasaki, T., Nemoto, S. and Maitani, T., Determination of isophorone in foods, Journal of the Food Hygienic Society of Japan, 46, 1, 28-32, (2005).
  • Camarasa, J.G. and Serra-Baldrich, E., Allergic dermatitis caused by gold. Description of a new case, Medicina Cutanea Ibero-Latino-Americana, 17, 3, 187-188, (1989).
  • Rademaker, M., Occupational epoxy resin allergic contact dermatitis, Australasian Journal of Dermatology, 41, 4, 222-224, (2000).
  • Clarke, C. W. and Aldons, P. M., Isophorone diisocyanate induced respiratory disease (IPDI), Australian and New Zealand Journal of Medicine, 11, 3, 290-292, (1981).
  • Bucher, J.R., Huff, J. and Kluwe, W. M., Toxicology and carcinogenesis studies of isophorone in F344 rats and B6C3F1 mice, Toxicology, 39, 2, 207-219, (1986).
  • Yamada, Y., Yoshikawa, N., Sasai, H. and Shibasaki, M., Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones, Angewandte Chemie International Edition, 36, 17, 1871-1873, (1997).
  • Kergomard, A., Renard, M.F. and Veschambre, H., Microbiological reduction of alpha, beta-unsaturated ketones by Beauveria sulfurescens, The Journal of Organic Chemistry, 47, 5, 792-798, (1982).
  • Conti, M., Cyclopentenone: a special moiety for anticancer drug design, Anti-cancer Drugs, 17, 9, 1017-1022, (2006).
  • Stoe & Cie, X-AREA (Version 1.18), Stoe & Cie GmbH, Darmstadt, Germany, (2002). Sheldrick, G.M., SHELXS-97, Program for the Solution of Crystal Structures, University of Gottingen, (1997).
  • Sheldrick, G.M., SHELXL-2014/7: Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, (2014).
  • Farrugia, L.J., WinGX suite for small-molecule single-crystal crystallography, Journal of Applied Crystallography, 32, 4, 837-838, (1999).
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J., Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, (2009).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • a) Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A, 38, 6, 3098-3100, (1988). b) Becke, A.D., Density‐functional thermochemistry. I, The effect of the exchange‐only gradient correction, The Journal of Chemical Physics, 96, 3, 2155-2160, (1992).
  • Ditchfield, R., Hehre, W.J. and Pople, J.A, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics, 54, 2, 724-728, (1971).
  • Lee, C., Yang, W. and Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, 2, 785-789, (1988).
  • Kowalczyk, I., Bartoszak-Adamska, E., Jaskólski, M., Dega-Szafran, Z. and Szafran, M, Structure of 1H-2-oxo-2, 3-dihydroimidazo [1,2-a] pyridinium perchlorate studied by X-ray diffraction, DFT calculations and by FTIR and NMR spectroscopy, Journal of Molecular Structure, 976, 1, 119-128, (2010).
  • Merrick, J.P., Moran, D. and Radom, L., An evaluation of harmonic vibrational frequency scale factors, The Journal of Physical Chemistry A, 111, 45, 11683-11700, (2007).
  • Cheeseman, J.R., Trucks, G.W., Keith, T.A. and Frisch, M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors, The Journal of Chemical Physics, 104, 14, 5497-5509, (1996).
  • a) Koopmans, T., Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica, 1, 1, 104-113, (1933). b) Vektariene, A., Vektaris, G. and Svoboda, J., A theoretical approach to the nucleophilic behavior of benzofused thieno [3,2-b] furans using DFT and HF based reactivity descriptors, Arkivoc: Online Journal of Organic Chemistry, vii, 311-329 (2009).
  • Mulliken, R. S., A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities, The Journal of Chemical Physics, 2, 11, 782-793, (1934).
  • a) Pearson, R.G., Hard and soft acids and bases, Journal of the American Chemical Society, 85, 22, 3533-3539, (1963). b) Pearson, R.G., Hard and soft acids and bases, HSAB, part 1: Fundamental principles, Journal of Chemical Education, 45, 9, 581-587, (1968). c) Pearson, R.G., Maximum chemical and physical hardness, Journal of Chemical Education, 76, 2, 267-270, (1999).
  • Pearson, R.G., Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences, 83, 22, 8440-8441, (1986).
  • Parr, R.G. and Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society, 105, 26, 7512-7516, (1983).
  • Chattaraj, P.K. and Roy, D.R., Update 1 of: Electrophilicity index, Chemical Reviews, 107, 9, PR46–PR74, (2007).
  • Hernández-Paredes, J., Glossman-Mitnik, D., Duarte-Moller, A. and Flores-Holguín, N., Theoretical calculations of molecular dipole moment, polarizability, and first hyperpolarizability of glycine–sodium nitrate, Journal of Molecular Structure: THEOCHEM, 905, 1, 76-80, (2009).
  • Prashanth, J., Ramesh, G., Naik, J.L., Ojha, J.K., Reddy, B.V. and Rao, G.R., Molecular structure, vibrational analysis and first order hyperpolarizability of 4-methyl-3-nitrobenzoic acid using density functional theory, Optics and Photonics Journal, 5, 91-107, (2015).
  • a) Kleinman, D.A., Nonlinear dielectric polarization in optical media, Physical Review, 126, 6, 1977-1979, (1962). b) Ramalingam, S., Karabacak, M., Periandy, S., Puviarasan, N. and Tanuja, D., Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 207-220, (2012).
  • Suresh, S., Gunasekaran, S. and Srinivasan, S., Spectroscopic (FT-IR, FT-Raman, NMR and UV–Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 130-141, (2014).
  • Fatima, Z., Senthilkumar, G., Vadivel, A., Manikandan, H. and Velmurugan, D, 3-[(E)-2-(4-Chlorophenyl)ethenyl]-5,5-dimethylcyclohex-2-en-1-one, Acta Crystallographica Section E: Structure Reports Online, 69, 7, o1121-o1121, (2013).
  • Cha, J.H., Lee, J.K., Min, S.J., Cho, Y.S. and Park, J., (E)-2,2′-[3-(4-Chlorophenyl) prop-2-ene-1,1-diyl]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one), Acta Crystallographica Section E: Structure Reports Online, 69, 8, o1347-o1347, (2013).
  • Boulebd, H., Bouraiou, A., Bouacida, S., Merazig, H. and Belfaitah, A., 3-Anilino-5, 5-dimethylcyclohex-2-enone, Acta Crystallographica Section E: Structure Reports Online, 70, 3, o233-o234, (2014).
  • Allinger, N.L., Hirsch, J.A., Miller, M.A. and Tyminski, I.J., Conformational analysis, LXV, calculation by the Westheimer method of the structures and energies of a variety of organic molecules containing nitrogen, oxygen, and halogen, Journal of the American Chemical Society, 91, 2, 337-343, (1969).
  • Koleva, B.B. and Kolev, T., Monoclinic and triclinic polymorphs of 2-{5, 5-dimethyl-3-[2-(2, 4, 6-trimethoxyphenyl) vinyl] cyclohex-2-enylidene} malononitrile—Solid-state linear-polarized IR-spectroscopy, DFT calculations and vibrational analysis, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 3, 786-793, (2008).
  • Parveen, S., Al-Alshaikh, M.A., Panicker, C.Y., El-Emam, A.A., Salian, V.V., Narayana, B. and Van Alsenoy, C., Spectroscopic investigations and molecular docking study of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl) phenyl] prop-2-en-1-one using quantum chemical calculations, Journal of Molecular Structure, 1120, 317-326, (2016).
  • Silverstein, R.M., Webster, F.X., Kiemle, D.J. and Bryce, D.L, Spectrometric identification of organic compounds, 87, John Wiley & Sons, Hoboken, NJ, (2014).
  • Raj, P.S., Shoba, D., Ramalingam, S. and Periandy, S., Spectroscopic (FT-IR/FT-Raman) and computational (HF/DFT) investigation and HOMO/LUMO/MEP analysis on 1, 1-difluoro-2-vinyl-cyclopropane, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 293-302, (2015).
  • Coates, J., Interpretation of infrared spectra, a practical approach, in Meyers, R. A., (Ed), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 10815-10837, (2000).
  • James, C., Raj, A.A., Reghunathan, R., Jayakumar, V.S. and Joe, I.H., Structural conformation and vibrational spectroscopic studies of 2, 6‐bis (p‐N, N‐dimethyl benzylidene) cyclohexanone using density functional theory, Journal of Raman Spectroscopy, 37, 12, 1381-1392, (2006).
  • Erdik, E., Organik kimyada spektroskopik yöntemler, Gazi Büro Kitabevi, Ankara, 111, (2008).
  • Sathiyanarayanan, D.N., Vibrational spectroscopy theory and application, New Age International Publishers, New Delhi, 424, (2004).
  • Krishnakumar, V., Manohar, S. and Nagalakshmi, R., Crystal growth and characterization of N-hydroxyphthalimide (C8H5NO3) crystal, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1, 110-115, (2008).
  • Singh, N.P. and Yadav, R.A., Optics spectroscopy-vibrational studies of trifluoromethyl benzene derivatives I: 2-amino, 5-chloro and 2-amino, 5-bromo benzotrifluorides, Indian Journal of Physics, 75, 4, 347-356, (2001).
  • Brouwer, H. and Stothers, J.B., 13C-Nuclear magnetic resonance studies. XVI.,13C Spectra of some substituted acrylic acids and their methyl esters, A correlation of olefinic shieldings in α, β-unsaturated carbonyl systems, Canadian Journal of Chemistry, 50, 5, 601-611, (1972).
  • Francioso, O., Sanchez-Cortes, S., Tugnoli, V., Ciavatta, C., Sitti, L. and Gessa, C., Infrared, raman, and nuclear magnetic resonance (1H, 13C, and 31P) spectroscopy in the study of fractions of peat humic acids, Applied Spectroscopy, 50, 9, 1165-1174, (1996).
  • Jacobsen, N.E., NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology, 29, John Wiley & Sons, Hoboken, NJ, (2007).
  • Eryılmaz, S., Gül, M., İnkaya, E., İdil, Ö. and Özdemir, N., Synthesis, crystal structure analysis, spectral characterization, quantum chemical calculations, antioxidant and antimicrobial activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d] isoxazole, Journal of Molecular Structure, 1122, 219-233, (2016).
  • Verma, A.K., Bishnoi, A. and Fatma, S., Synthesis, spectral analysis and quantum chemical studies on molecular geometry of (2E, 6E)-2, 6-bis (2-chlorobenzylidene) cyclohexanone: experimental and theoretical approaches, Journal of Molecular Structure, 1116, 9-21, (2016).
  • Balcı, M., Nükleer manyetik rezonans spektroskopisi, 36, ODTÜ Yayıncılık, Ankara, (2004).
  • Maache, S., Bendjeddou, A., Abbaz, T., Gouasmia, A. and Villemin, D., Molecular structure, hyperpolarizability, NBO and Fukui function analysis of a serie of 1, 4, 3, 5-oxathiadiazepane-4, 4-dioxides derived of proline, Der Pharmacia Lettre, 8, 11, 27-37, (2016).
  • Aihara, J.I., Reduced HOMO− LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons, The Journal of Physical Chemistry A, 103, 37, 7487-7495, (1999).
  • Günay, N., Pir, H. and Atalay, Y., L-Asparaginyum pikrat molekülünün spektroskopik özelliklerinin teorik olarak incelenmesi, Sakarya Üniversitesi Fen Edebiyat Dergisi, 1, 15-32, (2011).
  • Eşme A. and Güneşdoğdu Sağdınç, S., Bazı Sudan Boyalarının Lineer, Lineer Olmayan Optik Özellikleri ve Kuantum Kimyasal Parametreleri, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16, 1, 47-75, (2014).
  • Nakano, M., Fujita, H., Takahata, M. and Yamaguchi, K., Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure− property relation in nlo responses of fractal antenna dendrimers, Journal of the American Chemical Society, 124, 32, 9648-9655, (2002).
  • Prashanth, J., Ramesh, G., Naik, J.L., Ojha, J.K., Reddy, B.V. and Rao, G.R., Molecular structure, vibrational analysis and first order hyperpolarizability of 4-methyl-3-nitrobenzoic acid using density functional theory, Optics and Photonics Journal, 5, 3, 91-107, (2015).
  • Sajan, D., Joe, H., Jayakumar, V.S. and Zaleski, J. Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, Journal of Molecular Structure, 785, 1, 43-53, (2006).
  • Muthu, S. and Maheswari, J.U., Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 154-163, (2012).
  • Geskin, V.M., Lambert, C. and Brédas, J.L., Origin of high second-and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polarized aromatic groups, Journal of the American Chemical Society, 125, 50, 15651-15658, (2003).
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C., Use of a free radical method to evaluate antioxidant activity, LWT-Food science and Technology, 28, 1, 25-30, (1995).
  • Oyaizu, M., Studies on products of browning reaction, The Japanese Journal of Nutrition and Dietetics, 44, 6, 307-315, (1986).
  • Decker, E.A. and Welch, B., Role of ferritin as a lipid oxidation catalyst in muscle food, Journal of Agricultural and Food Chemistry, 38, 3, 674-677, (1990).
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Serpil Eryılmaz

Melek Gül

Ersin İnkaya Bu kişi benim

Yayımlanma Tarihi 7 Aralık 2017
Gönderilme Tarihi 20 Ağustos 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Eryılmaz, S., Gül, M., & İnkaya, E. (2017). Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 89-104. https://doi.org/10.25092/baunfbed.363772
AMA Eryılmaz S, Gül M, İnkaya E. Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures. BAUN Fen. Bil. Enst. Dergisi. Aralık 2017;19(3):89-104. doi:10.25092/baunfbed.363772
Chicago Eryılmaz, Serpil, Melek Gül, ve Ersin İnkaya. “Synthesis, Spectral Characterization, Theoretical Analysis and Antioxidant Activities of Aldol Derivative Isophorone Structures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, sy. 3 (Aralık 2017): 89-104. https://doi.org/10.25092/baunfbed.363772.
EndNote Eryılmaz S, Gül M, İnkaya E (01 Aralık 2017) Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 3 89–104.
IEEE S. Eryılmaz, M. Gül, ve E. İnkaya, “Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures”, BAUN Fen. Bil. Enst. Dergisi, c. 19, sy. 3, ss. 89–104, 2017, doi: 10.25092/baunfbed.363772.
ISNAD Eryılmaz, Serpil vd. “Synthesis, Spectral Characterization, Theoretical Analysis and Antioxidant Activities of Aldol Derivative Isophorone Structures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/3 (Aralık 2017), 89-104. https://doi.org/10.25092/baunfbed.363772.
JAMA Eryılmaz S, Gül M, İnkaya E. Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures. BAUN Fen. Bil. Enst. Dergisi. 2017;19:89–104.
MLA Eryılmaz, Serpil vd. “Synthesis, Spectral Characterization, Theoretical Analysis and Antioxidant Activities of Aldol Derivative Isophorone Structures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 19, sy. 3, 2017, ss. 89-104, doi:10.25092/baunfbed.363772.
Vancouver Eryılmaz S, Gül M, İnkaya E. Synthesis, spectral characterization, theoretical analysis and antioxidant activities of aldol derivative isophorone structures. BAUN Fen. Bil. Enst. Dergisi. 2017;19(3):89-104.