Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı sıcaklıklar altında BSR yakıt demetinin efektif çoğalma faktörü ve yakıt sıcaklığı katsayısı hesaplamaları

Yıl 2018, , 355 - 363, 02.04.2018
https://doi.org/10.25092/baunfbed.411787

Öz

Bu çalışmada, Westinghouse tipi basınçlı su reaktörü
(BSR) yakıt demeti için, çeşitli sıcaklıklarda farklı yanabilir zehirler ve
ağırlık yüzdeleri kullanılarak efektif çoğalma faktörü (keff),
doppler katsayı sonuçları ve yoğunluk hesaplamaları sunulmaktadır. Reaktör
parametreleri olan keff ve doppler katsayıları, ZrB2 ile
kaplanmış integral yakıtlı yanabilir zehir çubukları ve Gadolina-Uranyum (UO2-Gd2O3)
integral yakıtlı yanabilir zehirler göz önüne alınarak hesaplanmıştır. Farklı
sıcaklıklarda elde edilen sonuçlar, yanabilir zehiri kullanılmayan yakıt demeti
sonuçları ile karşılaştırılmıştır. Artan sıcaklık değerlerinde, yakıt
demetlerinde reaktiflik azalmış doppler katsayıları ise artmıştır fakat doppler
katsayıları her sıcaklıkta negatif değerlerde kalmıştır. Sıcaklığın 1500 K’de
olduğu durumda yanabilir zehirli olmayan temel yakıt demetinde efektif çoğalma
faktörü 1.46985 iken ağırlık yüzdesi %2 ve %8 olan Gd2O3
ile IFBA yanabilir zehirli yakıt demetinin efektif çoğalma faktörü sırasıyla
1.38976, 1.37574 ve 1.30337olarak bulunmuştur.

Kaynakça

  • Naessens, E.P., Allen, K.S. and Morett, B.E., Use of 240Pu waste as burnable absorber in light water reactors, Nuclear Science and Engineering, 152, 306-313 (2006).
  • Sanders, C.E. and Wagner, J.C., Study of the effect of integral burnable absorbers for PWR burnup credit, U.S Nuclear Regulatory Commission, Oak Ridge National Laboratory, NUREG/CR-6760 ORNL/TM-2000-321, (2002).
  • Choi, Y. Baik, Y., Moon, B.M. and Sohn, D.S., Corrosion and wear properties of cold rolled 0.087% Gd lean duplex stainless steels for neutron absorbing material, Nuclear Engineering and Technology, 48, 164-168, (2016).
  • Duderstadt, J.J. and Hamilton, L.J., Nuclear Reactor Analysis, John Wiley & Sons, (1976).
  • Thilagam, L., Sunny, C.S., Subbaiah, K.V., Devan, K., Lee, Y.S. and Jagannathan, V., Doppler coefficient of reactivity - benchmark calculations for different enrichments of UO2, Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey, California, April 15-19, (2007).
  • Palanki B., Fabrication of UO2-Gd2O3 fuel pellets, Journal of Materials Science and Chemical Engineering, 4, 8-21, (2016).
  • Alhassan, E., Akaho, E.H.K., Nyarko, B.J.B., Adoo, N.A., Agbodemegbe, V.Y., Bansah, C.Y. and Della, R., Analysis of reactivity temperature coefficient for light water moderated HEU-UAl4 and LEU-UO2 lattices of MNSR, Journal of Applied Sciences Research, 6, 9, 1431-1439, (2010).
  • Lamarsh, J.R. and Baratta, J.A., Introduction to Nuclear Engineering, 366-369, Third Edition, Prentice Hall Upper Saddle River, New Jersey, (1982).

Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures

Yıl 2018, , 355 - 363, 02.04.2018
https://doi.org/10.25092/baunfbed.411787

Öz

This paper presents effective multiplication factor (keff)
with different burnable absorbers and weight percentages at different
temperatures as well as doppler coefficient results and number density
calculations for Westinghouse type pressurized water reactor (PWR) Assembly.
Integral fuel burnable absorber rods coated with ZrB2 and
Gadolinia-Uranium (UO2-Gd2O3) integral
burnable absorbers were considered to calculate reactor parameters (keff
and doppler coefficient). The results compared with base fuel which
does not contain burnable absorber at different temperatures. The results show
that reactivity was decreased with increased temperature and doppler
coefficients increased with temperatures but remained negative at all
temperatures. At 1500 K, the effective multiplication factor for base fuel was
found to be 1.46985 while the effective multiplication factors for 2% with Gd2O3,
8% with Gd2O3, and IFBA rods were 1.38976,  1.37574, and 1.30337 respectively.

Kaynakça

  • Naessens, E.P., Allen, K.S. and Morett, B.E., Use of 240Pu waste as burnable absorber in light water reactors, Nuclear Science and Engineering, 152, 306-313 (2006).
  • Sanders, C.E. and Wagner, J.C., Study of the effect of integral burnable absorbers for PWR burnup credit, U.S Nuclear Regulatory Commission, Oak Ridge National Laboratory, NUREG/CR-6760 ORNL/TM-2000-321, (2002).
  • Choi, Y. Baik, Y., Moon, B.M. and Sohn, D.S., Corrosion and wear properties of cold rolled 0.087% Gd lean duplex stainless steels for neutron absorbing material, Nuclear Engineering and Technology, 48, 164-168, (2016).
  • Duderstadt, J.J. and Hamilton, L.J., Nuclear Reactor Analysis, John Wiley & Sons, (1976).
  • Thilagam, L., Sunny, C.S., Subbaiah, K.V., Devan, K., Lee, Y.S. and Jagannathan, V., Doppler coefficient of reactivity - benchmark calculations for different enrichments of UO2, Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey, California, April 15-19, (2007).
  • Palanki B., Fabrication of UO2-Gd2O3 fuel pellets, Journal of Materials Science and Chemical Engineering, 4, 8-21, (2016).
  • Alhassan, E., Akaho, E.H.K., Nyarko, B.J.B., Adoo, N.A., Agbodemegbe, V.Y., Bansah, C.Y. and Della, R., Analysis of reactivity temperature coefficient for light water moderated HEU-UAl4 and LEU-UO2 lattices of MNSR, Journal of Applied Sciences Research, 6, 9, 1431-1439, (2010).
  • Lamarsh, J.R. and Baratta, J.A., Introduction to Nuclear Engineering, 366-369, Third Edition, Prentice Hall Upper Saddle River, New Jersey, (1982).
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Akyürek

Yayımlanma Tarihi 2 Nisan 2018
Gönderilme Tarihi 12 Ağustos 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Akyürek, T. (2018). Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 355-363. https://doi.org/10.25092/baunfbed.411787
AMA Akyürek T. Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):355-363. doi:10.25092/baunfbed.411787
Chicago Akyürek, Tayfun. “Effective Multiplication Factor and Fuel Temperature Coefficient Calculations of PWR Assembly under Different Temperatures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 355-63. https://doi.org/10.25092/baunfbed.411787.
EndNote Akyürek T (01 Temmuz 2018) Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 355–363.
IEEE T. Akyürek, “Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 355–363, 2018, doi: 10.25092/baunfbed.411787.
ISNAD Akyürek, Tayfun. “Effective Multiplication Factor and Fuel Temperature Coefficient Calculations of PWR Assembly under Different Temperatures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 355-363. https://doi.org/10.25092/baunfbed.411787.
JAMA Akyürek T. Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures. BAUN Fen. Bil. Enst. Dergisi. 2018;20:355–363.
MLA Akyürek, Tayfun. “Effective Multiplication Factor and Fuel Temperature Coefficient Calculations of PWR Assembly under Different Temperatures”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 355-63, doi:10.25092/baunfbed.411787.
Vancouver Akyürek T. Effective multiplication factor and fuel temperature coefficient calculations of PWR assembly under different temperatures. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):355-63.