Araştırma Makalesi
BibTex RIS Kaynak Göster

Güneş pilleri için ZnO'nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması

Yıl 2018, , 22 - 33, 01.12.2018
https://doi.org/10.25092/baunfbed.416460

Öz

ZnO bileşiğinin kristal yapısı yoğunluk fonksiyonel teorisi (DFT) ile
genelleştirilmiş gradyant yaklaşımı (GGA) kullanılarak yüksek hidrostatik
basınç altında 100 GPa’ya kadar çalışıldı. Çevre koşullarında ZnO, uzay grubu
P63mc olan wurtzite (B4) tipi yapıda kristalleşir. Bu yapı üzerine
artan basınç uygulandığında, ZnO’nun B4 yapısı uzay grubu



















 
olan NaCl (B1) tipi yapıya dönüşmüştür. Bu çalışmada elde edilen faz geçişinin deneysel sonuçlarla
uyumunu araştırmak için toplam enerji ve entalpi hesaplamaları yapıldı. Bu
hesaplamalar sonucu faz değişiminin 9 GPa civarında gerçekleştiği sonucuna
varıldı. Bu sonucun literatür ile uyum içinde olduğu görüldü. Ayrıca ZnO’nun
elektronik özellikleri de incelendi. B4 ve B1 yapıları için band aralıkları
sırası ile 0.7 eV ve 1.95 eV olarak elde edildi.

Kaynakça

  • Amrani, B., Chiboub, I., Hiadsi, S., Benmessabih, T. ve Hamdadou, N., Structural and electronic properties of ZnO under high pressures, Solid State Communications, 137, 7, 395-399, (2006).
  • Cui, S., Feng, W., Hu, H., Feng, Z. ve Wang, Y., Structural and electronic properties of ZnO under high pressure, Journal of Alloys and Compounds, 476, 1, 306-310, (2009).
  • Desgreniers, S., High-density phases of ZnO: Structural and compressive parameters, Physical Review B, 58, 21, 14102, (1998).
  • Dong, X., Liu, F., Xie, Y., Shi, W., Ye, X. ve Jiang, J., Pressure-induced structural transition of ZnO nanocrystals studied with molecular dynamics, Computational Materials Science, 65, 450-455, (2012).
  • Kuang, F.G., Kuang, X.Y., Kang, S.Y., Zhong, M.M. ve Mao, A.J., A first principle study of pressure-induced effects on phase transitions, band structures and elasticity of zinc oxide, Materials Science in Semiconductor Processing, 23, 63-71, (2014).
  • Maouche, D., Saoud, F.S. ve Louail, L., Dependence of structural properties of ZnO on high pressure, Materials Chemistry and Physics, 106, 1, 11-15, (2007).
  • Pu, C., Tang, X. ve Zhang, Q., First principles study on the structural and optical properties of the high-pressure ZnO phases, Solid State Communications, 151, 21, 1533-1536, (2011).
  • Recio, J., Blanco, M., Luana, V., Pandey, R., Gerward, L. ve Olsen, J.S., Compressibility of the high-pressure rocksalt phase of ZnO, Physical Review B, 58, 14, 8949, (1998).
  • Saeed, Y., Shaukat, A., Ikram, N. ve Tanveer, M., Structural and electronic properties of rock salt phase of ZnO under compression, Journal of Physics and Chemistry of Solids, 69, 7, 1676-1683, (2008).
  • Saoud, F.S., Plenet, J.C. ve Henini, M., Band gap and partial density of states for ZnO: Under high pressure, Journal of Alloys and Compounds, 619, 812-819, (2015).
  • Schleife, A., Fuchs, F., Furthmüller, J. ve Bechstedt, F., First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs, Physical Review B, 73, 24, 245212, (2006).
  • Usuda, M., Hamada, N., Kotani, T. ve van Schilfgaarde, M., All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO, Physical Review B, 66, 12, 125101, (2002).
  • Xin-Yu, Z., Zhou-Wen, C., Yan-Peng, Q., Yan, F., Liang, Z., Li, Q., Ming-Zhen, M., Ri-Ping, L. ve Wen-Kui, W., Ab initio comparative study of zincblende and wurtzite ZnO, Chinese Physics Letters, 24, 4, 1032, (2007).
  • Stolt, L., Hedström, J., Kessler, J., Ruckh, M., Velthaus, K.O. ve Schock, H.W., ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance, Applied Physics Letters, 62, 6, 597-599, (1993).
  • Ikeda, T., Sato, K., Hayashi, Y., Wakayama, Y., Adachi, K. ve Nishimura, H., Surface microstructures of ZnO coated SnO2: F films, Solar Energy Materials and Solar Cells, 34, 1-4, 379-384, (1994).
  • Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K. ve Pasternak, M.P., Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, 53, 17, 11425, (1996).
  • Jaffe, J. ve Hess, A., Hartree-Fock study of phase changes in ZnO at high pressure, Physical Review B, 48, 11, 7903, (1993).
  • Jaffe, J.E., Snyder, J.A., Lin, Z. ve Hess, A.C., LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Physical Review B, 62, 3, 1660, (2000).
  • Bates, C.H., White, W.B. ve Roy, R., New high-pressure polymorph of zinc oxide, Science, 137, 3534, 993-993, (1962).
  • Jamieson, J.C., The phase behavior of simple compounds, Physics of the Earth and Planetary Interiors, 3, 201-203, (1970).
  • Yu, S., Spain, I. ve Skelton, E., High pressure phase transitions in tetrahedrally coordinated semiconducting compounds, Solid State Communications, 25, 1, 49-52, (1978).
  • Decremps, F., Zhang, J., Li, B. ve Liebermann, R.C., Pressure-induced softening of shear modes in ZnO, Physical Review B, 63, 22, 224105, (2001).
  • Decremps, F., Zhang, J. ve Liebermann, R., New phase boundary and high-pressure thermoelasticity of ZnO, EPL (Europhysics Letters), 51, 3, 268, (2000).
  • Ahuja, R., Fast, L., Eriksson, O., Wills, J. ve Johansson, B., Elastic and high pressure properties of ZnO, Journal of Applied Physics, 83, 12, 8065-8067, (1998).
  • Saib, S. ve Bouarissa, N., Structural parameters and transition pressures of ZnO: ab‐initio calculations, Physica Status Solidi (b), 244, 3, 1063-1069, (2007).
  • Ordejón, P., Artacho, E. ve Soler, J.M., Self-consistent order-N density-functional calculations for very large systems, Physical Review B, 53, 16, R10441, (1996).
  • Perdew, J.P., Burke, K. ve Ernzerhof, M., Generalized gradient approximation made simple, Physical Review Letters, 77, 18, 3865, (1996).
  • Troullier, N. ve Martins, J.L., Efficient pseudopotentials for plane-wave calculations, Physical Review B, 43, 3, 1993, (1991).
  • Monkhorst, H.J. ve Pack, J.D., Special points for Brillouin-zone integrations, Physical Review B, 13, 12, 5188, (1976).
  • Parrinello, M. ve Rahman, A., Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45, 14, 1196, (1980).
  • Hundt, R., SchoÈn, J.C., Hannemann, A. ve Jansen, M., Determination of symmetries and idealized cell parameters for simulated structures, Journal of Applied Crystallography, 32, 3, 413-416, (1999).
  • Hannemann, A., Hundt, R., Schön, J. ve Jansen, M., A new algorithm for space-group determination, Journal of Applied Crystallography, 31, 6, 922-928, (1998).
  • Birch, F., Finite elastic strain of cubic crystals, Physical Review, 71, 11, 809, (1947).
  • Murnaghan, F., The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, 30, 9, 244-247, (1944).
  • Zagorac, D., Schön, J., Zagorac, J. ve Jansen, M., Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties, Physical Review B, 89, 7, 075201, (2014).

Investigation of structural and electronic properties of ZnO for solar cells: An ab-initio study

Yıl 2018, , 22 - 33, 01.12.2018
https://doi.org/10.25092/baunfbed.416460

Öz

The crystal structure of
the ZnO compound was studied up to 100 GPa under high hydrostatic pressure
using the density functional theory (DFT) with the generalized gradient
approximation (GGA). Under ambient conditions, ZnO crystallizes in wurtzite
(B4) type structure with space group P63mc. When increased pressure is applied
to this structure, the B4 structure of ZnO is transformed into the NaCl (B1)
type structure, which is the space group



















. Total energy and enthalpy
calculations were carried out to investigate the phase transition obtained in
this study with experimental results. These calculations are the result of a
phase change of around 9 GPa. This result was found to be in accordance with
the literature. The electronic properties of ZnO have also been studied. B4 and
B1 band gaps were 0.7 eV and 1.95 eV, respectively.

Kaynakça

  • Amrani, B., Chiboub, I., Hiadsi, S., Benmessabih, T. ve Hamdadou, N., Structural and electronic properties of ZnO under high pressures, Solid State Communications, 137, 7, 395-399, (2006).
  • Cui, S., Feng, W., Hu, H., Feng, Z. ve Wang, Y., Structural and electronic properties of ZnO under high pressure, Journal of Alloys and Compounds, 476, 1, 306-310, (2009).
  • Desgreniers, S., High-density phases of ZnO: Structural and compressive parameters, Physical Review B, 58, 21, 14102, (1998).
  • Dong, X., Liu, F., Xie, Y., Shi, W., Ye, X. ve Jiang, J., Pressure-induced structural transition of ZnO nanocrystals studied with molecular dynamics, Computational Materials Science, 65, 450-455, (2012).
  • Kuang, F.G., Kuang, X.Y., Kang, S.Y., Zhong, M.M. ve Mao, A.J., A first principle study of pressure-induced effects on phase transitions, band structures and elasticity of zinc oxide, Materials Science in Semiconductor Processing, 23, 63-71, (2014).
  • Maouche, D., Saoud, F.S. ve Louail, L., Dependence of structural properties of ZnO on high pressure, Materials Chemistry and Physics, 106, 1, 11-15, (2007).
  • Pu, C., Tang, X. ve Zhang, Q., First principles study on the structural and optical properties of the high-pressure ZnO phases, Solid State Communications, 151, 21, 1533-1536, (2011).
  • Recio, J., Blanco, M., Luana, V., Pandey, R., Gerward, L. ve Olsen, J.S., Compressibility of the high-pressure rocksalt phase of ZnO, Physical Review B, 58, 14, 8949, (1998).
  • Saeed, Y., Shaukat, A., Ikram, N. ve Tanveer, M., Structural and electronic properties of rock salt phase of ZnO under compression, Journal of Physics and Chemistry of Solids, 69, 7, 1676-1683, (2008).
  • Saoud, F.S., Plenet, J.C. ve Henini, M., Band gap and partial density of states for ZnO: Under high pressure, Journal of Alloys and Compounds, 619, 812-819, (2015).
  • Schleife, A., Fuchs, F., Furthmüller, J. ve Bechstedt, F., First-principles study of ground-and excited-state properties of MgO, ZnO, and CdO polymorphs, Physical Review B, 73, 24, 245212, (2006).
  • Usuda, M., Hamada, N., Kotani, T. ve van Schilfgaarde, M., All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO, Physical Review B, 66, 12, 125101, (2002).
  • Xin-Yu, Z., Zhou-Wen, C., Yan-Peng, Q., Yan, F., Liang, Z., Li, Q., Ming-Zhen, M., Ri-Ping, L. ve Wen-Kui, W., Ab initio comparative study of zincblende and wurtzite ZnO, Chinese Physics Letters, 24, 4, 1032, (2007).
  • Stolt, L., Hedström, J., Kessler, J., Ruckh, M., Velthaus, K.O. ve Schock, H.W., ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance, Applied Physics Letters, 62, 6, 597-599, (1993).
  • Ikeda, T., Sato, K., Hayashi, Y., Wakayama, Y., Adachi, K. ve Nishimura, H., Surface microstructures of ZnO coated SnO2: F films, Solar Energy Materials and Solar Cells, 34, 1-4, 379-384, (1994).
  • Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K. ve Pasternak, M.P., Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Physical Review B, 53, 17, 11425, (1996).
  • Jaffe, J. ve Hess, A., Hartree-Fock study of phase changes in ZnO at high pressure, Physical Review B, 48, 11, 7903, (1993).
  • Jaffe, J.E., Snyder, J.A., Lin, Z. ve Hess, A.C., LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Physical Review B, 62, 3, 1660, (2000).
  • Bates, C.H., White, W.B. ve Roy, R., New high-pressure polymorph of zinc oxide, Science, 137, 3534, 993-993, (1962).
  • Jamieson, J.C., The phase behavior of simple compounds, Physics of the Earth and Planetary Interiors, 3, 201-203, (1970).
  • Yu, S., Spain, I. ve Skelton, E., High pressure phase transitions in tetrahedrally coordinated semiconducting compounds, Solid State Communications, 25, 1, 49-52, (1978).
  • Decremps, F., Zhang, J., Li, B. ve Liebermann, R.C., Pressure-induced softening of shear modes in ZnO, Physical Review B, 63, 22, 224105, (2001).
  • Decremps, F., Zhang, J. ve Liebermann, R., New phase boundary and high-pressure thermoelasticity of ZnO, EPL (Europhysics Letters), 51, 3, 268, (2000).
  • Ahuja, R., Fast, L., Eriksson, O., Wills, J. ve Johansson, B., Elastic and high pressure properties of ZnO, Journal of Applied Physics, 83, 12, 8065-8067, (1998).
  • Saib, S. ve Bouarissa, N., Structural parameters and transition pressures of ZnO: ab‐initio calculations, Physica Status Solidi (b), 244, 3, 1063-1069, (2007).
  • Ordejón, P., Artacho, E. ve Soler, J.M., Self-consistent order-N density-functional calculations for very large systems, Physical Review B, 53, 16, R10441, (1996).
  • Perdew, J.P., Burke, K. ve Ernzerhof, M., Generalized gradient approximation made simple, Physical Review Letters, 77, 18, 3865, (1996).
  • Troullier, N. ve Martins, J.L., Efficient pseudopotentials for plane-wave calculations, Physical Review B, 43, 3, 1993, (1991).
  • Monkhorst, H.J. ve Pack, J.D., Special points for Brillouin-zone integrations, Physical Review B, 13, 12, 5188, (1976).
  • Parrinello, M. ve Rahman, A., Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45, 14, 1196, (1980).
  • Hundt, R., SchoÈn, J.C., Hannemann, A. ve Jansen, M., Determination of symmetries and idealized cell parameters for simulated structures, Journal of Applied Crystallography, 32, 3, 413-416, (1999).
  • Hannemann, A., Hundt, R., Schön, J. ve Jansen, M., A new algorithm for space-group determination, Journal of Applied Crystallography, 31, 6, 922-928, (1998).
  • Birch, F., Finite elastic strain of cubic crystals, Physical Review, 71, 11, 809, (1947).
  • Murnaghan, F., The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, 30, 9, 244-247, (1944).
  • Zagorac, D., Schön, J., Zagorac, J. ve Jansen, M., Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties, Physical Review B, 89, 7, 075201, (2014).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Cihan Kürkçü

Ziya Merdan

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 11 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Kürkçü, C., & Merdan, Z. (2018). Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 22-33. https://doi.org/10.25092/baunfbed.416460
AMA Kürkçü C, Merdan Z. Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. BAUN Fen. Bil. Enst. Dergisi. Aralık 2018;20(2):22-33. doi:10.25092/baunfbed.416460
Chicago Kürkçü, Cihan, ve Ziya Merdan. “Güneş Pilleri için ZnO’nun yapısal Ve Elektronik özelliklerinin Incelenmesi: Ab-Initio çalışması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 2 (Aralık 2018): 22-33. https://doi.org/10.25092/baunfbed.416460.
EndNote Kürkçü C, Merdan Z (01 Aralık 2018) Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2 22–33.
IEEE C. Kürkçü ve Z. Merdan, “Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 2, ss. 22–33, 2018, doi: 10.25092/baunfbed.416460.
ISNAD Kürkçü, Cihan - Merdan, Ziya. “Güneş Pilleri için ZnO’nun yapısal Ve Elektronik özelliklerinin Incelenmesi: Ab-Initio çalışması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (Aralık 2018), 22-33. https://doi.org/10.25092/baunfbed.416460.
JAMA Kürkçü C, Merdan Z. Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. BAUN Fen. Bil. Enst. Dergisi. 2018;20:22–33.
MLA Kürkçü, Cihan ve Ziya Merdan. “Güneş Pilleri için ZnO’nun yapısal Ve Elektronik özelliklerinin Incelenmesi: Ab-Initio çalışması”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 2, 2018, ss. 22-33, doi:10.25092/baunfbed.416460.
Vancouver Kürkçü C, Merdan Z. Güneş pilleri için ZnO’nun yapısal ve elektronik özelliklerinin incelenmesi: Ab-initio çalışması. BAUN Fen. Bil. Enst. Dergisi. 2018;20(2):22-33.