Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of radiological hazards and lifetime cancer risk in some marble samples from the Marmara Region

Yıl 2018, , 62 - 74, 29.10.2018
https://doi.org/10.25092/baunfbed.476604

Öz

In
this study, 226Ra, 232Th and 40K
concentrations were measured by gamma spectrometry system to determine the
natural radioactivity levels in some marbles mining from the Marmara Region.  Mean activity concentrations of 226Ra,
232Th and 40K  in
marble samples were measured as 37.446, 34.593 and 248.041 Bq / kg,
respectively.  The absorbed dose rate (D),
annual effective dose equivalent(YEDE), radium equivalent activity (Raeq),
internal hazard index (Hi) and external hazard index (Hd) values were
calculated using the 226Ra, 232Th, 40K activity
concentrations obtained as a result of the measurements.  In addition, lifetime cancer risk (LCR), which
is a consequence of radiation exposure, has been calculated. All the results
obtained are compared with the limit values recommended by international
organizations.  According to these
results, it can be concluded that there is no harm in terms of both
radiological damage indices and dose parameters.

Kaynakça

  • Malain, D., Regan, P.H., Bradley, D.A., Matthews, M., Al-Sulaiti, H.A., Santawamaitre, T. An evaluation of the natural radioactivity in Andaman beach sand samples of Thailand after the 2004 tsunami, Appl. Radiat. Isot., 70(8), 1467–1474, (2012).
  • Veiga, R., Sanches, N., Anjos, R.M., Macario, K., Bastos, J., Iguatemy, M., Aguiar, J.G., Santos, A.M.A., Mosquera, B., Carvalho, C., Filho, M.B., Umisedo, N.K., Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas., 41(2), 189–196, (2006).
  • UNSCEAR. Sources and Effects of Ionizing radiation, UnitedNations Scientific Committee on the Effects of Atomic radiation. Exposures from Natural Radiation Sources, Annex B, UnitedNations, New York (2000).
  • Stoulos, S., Manolopoulou, M., Papastefanou, C., Assessment of natural radiation exposure and radon exhalation from building materials in Greece, J. Environ. Radioact., 69, 225–240, (2003).
  • Abbady, A.G.E., Uosif, M.A.M., El-Taher, A., Natural radioactivityand dose assessment for phosphate rocks from Wadi El-Mashashand El-Mahamid Mines, Egypt, J. Environ. Radioact., 84,65 (2005).
  • El Afifi, E.M., Hilal, M.A., Khalifa, S.M., Aly, H.F., Evaluation of U, Th, K and Emanated radonin some NORM and TENORM, Radiat. Meas., 41, 627 (2006).
  • Al-Jarallah, M.I., Fazal-ur-Rehman, Musazay, M.S., Aksoy, A., Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia, Radiat.Meas., 40, 625 (2005).
  • Uyanik, N.A., Öncü, Z., Uyanik, O., Bozcu, M., Akkurt, İ., Günoğlu, K., Yağmurlu, F., Distribution of natural radioactivity from 40K radioelement in volcanics of Sandıklı-Şuhut (Afyon) area, Acta Physica Polonica A, 128(2-B), 438-440, (2012).
  • Canbaz, B., Füsun Çam, N., Yaprak, G., Candan, O., Natural radioactivity (226Ra,232Th and40K) and assessment of radiologicalhazards in the Kestanbolgranitoid, Turkey, Radiat. Prot. Dosim.,141, 192 (2010).
  • Fazal-ur-Rehman, M.I. Al-Jarallah, M.S. Musazay, F. Abu-Jarad,. Application of the can technique and radon gas analyzer for radonexhalation measurements, Appl. Radiat. Isot. 59, 353 (2003).
  • Myatt, T.A., Allen, J.G., Minegishi, T., McCarthy, W.B., Mac-Intosh, D.L., McCarthy, J.F., Assessing exposure to granite countertopsPart 1: radiation, J. Expo. Sci. Environ. Epidemiol, 20, 280 (2010).
  • Al-Selah, F.S., Al-Berzan, B., Measurements of natural radioac-tivity in some kinds of marble and granite used in Riyadh region, J. Nucl. Radiat. Phys., 2, 25–36, (2007).
  • El-Dine, N.W., El-Shershaby, A., Ahmed, F., Abdel-Haleem, A.S., Measurement of radioactivity and radon exhalation ratein different kinds of marbles and granites, Appl. Radiat. Isot., 55, 853, (2001).
  • Beretka, J., Mathew, P.J., Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Phys., 48, 87–95 (1985).
  • Akkurt I. ve Gunoglu, K., Natural radioactivity measurements and radiation dose estimation in some sedimentary rock samples in Turkey, Science and Technology of Nuclear Installations, Volume 2014 (2014).
  • Kohshi, C., Takao, I., Hideo, S., Terrestrial gamma radiation in Koshi prefecture, Japan, J. Health Sci., 47, 362 (2001).
  • Akkurt, I., Uyanik, N.A., Gunoglu, K., Radiation dose estimation: an in vitro measurement for Isparta-Turkey IJCESEN, 1(1),1-4, (2015).
  • Günay, O., Saç, M.M., Içhedef, M. Taşköprü, C. Soil gas radon concentrations along the Ganos Fault (GF), Arabian Journal of Geoscience, 11:213. Print ISSN: 1866-7538, (2018)
  • Akkurt I. Effective atomic and electron numbers of some steels at different energies. Annals of Nuclear Energy, 36, 1702–1705, (2009).
  • Akkurt I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A. Radiation shielding of concretes containing different aggregates, Cement & Concrete Composites, 28, 153–157, (2006).
  • Akkurt, I., Gunoglu, K. and Arda, S.S., Detection efficiency of NaI(Tl) detector in 511-1332 keV energy range, Science and Technology of Nuclear Installations, 1-5, (2014).
  • Iqbal, M., Tufail, M., ve Mirza, S.M., Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer. Journal of Environmental Radioactivity, 51, 255-265, (2000).
  • Senthilkumar, G., Raghu, Y., Sivakumar, S., Chandrasekaran, A., Anand, D. P., & Ravisankar, R., Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thir- uvannamalai, Tamilnadu, India, Journal of Radiation Research and Applied Sciences, 7, 1, 116-122, (2014).
  • Al-Zahrani, J.H. Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia, Journal of Radiation Research and Applied Sciences, 10, 241-245, (2017)
  • Osmanlioglu, A.E., Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey, Radiation Protection Dosimetry, 121, 325-329, (2006).
  • Sesana, L., Fumagalli, M., Carnevale, M., Polla, G., Facchini, U., Colombo, A., Tunesi, A., De Capitani, L., Rusconi, R., Natural radionuclides in the rocks of the Valle del Carvo Pluto in Piedmon, Radiation Protection Dosimetry, 118, 3, 337-344 (2006).
  • Amin, R.M., Gamma radiation measurements of naturally occurring radio- active samples from Egyptian commercial granites, Environmental Earth Sciences, 67(3), 771-775, (2012).
  • Malczewski, M., Teper, L., & Dorda, J., Assessment of natural andanthropo- genic radioactivity levels in rocks and soils in the environs of Swieradow Zdrojin Sudetes, Poland, by in situ gamma-ray spectrometry, Journal of Environmental Radioactivity, 73, 233-245, (2004).
  • Sharaf, J.M., & Hamideen, M.S., Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate, Applied Radiation and Isotopes, 80, 61-66, (2013).
  • Thabayneh, K. M., Measurement of natural radioactivity and radon exhala- tion rate in granite samples used in Palestinian buildings, Arabian Journal for Science and Engineering, 1-7, (2013).
  • Günay O., Determination of natural radioactivity and radiological effects in some soil samples in Beykoz-Istanbul, European Journal of Science and Technology 12, 9-14, (2018).
  • Abbasi, A., Calculation of gamma radiation dose rate and radon concentra- tion due to granites used as building materials in Iran, Radiation Protection Dosimetry, 155(3), 335-342, (2013).

Marmara Bölgesi'ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi

Yıl 2018, , 62 - 74, 29.10.2018
https://doi.org/10.25092/baunfbed.476604

Öz

Bu
çalışmada, Marmara Bölgesi’ nden çıkarılan bazı mermerlerdeki doğal
radyoaktivite seviyelerini belirlemek için 226Ra, 232Th
ve 40K konsantrasyonları gama spektrometre sistemi ile ölçülmüştür.  Mermer numunelerindeki 226Ra, 232Th
ve 40K ortalama aktivite konsantrasyonları, sırasıyla 37.446, 34.593
ve 248.041 Bq / kg olarak ölçülmüştür.  Ölçümler
sonucunda elde edilen 226Ra, 232Th, 40K aktivite
konsantrasyonları kullanılarak soğurulan gama doz hızı (D), yıllık etkin doz
eşdeğeri (YEDE), radyum eşdeğer aktivitesi (Raeq), iç tehlike
endeksi (Hi) ve dış tehlike endeksi (Hd) değerleri hesaplanmıştır.  Bunların yanı sıra, radyasyon maruziyetinin
bir sonucu olan yaşam boyu kanser riski (LCR) hesaplanmıştır.  Elde edilen tüm sonuçlar uluslararası
kuruluşlar tarafından önerilen limit değerler ile karşılaştırılmıştır.  Bu sonuçlara göre, hem radyolojik zarar
indeksleri açısından hem de doz parametreleri açısından hiç bir zarar teşkil
etmediği sonucuna varılabilir.

Kaynakça

  • Malain, D., Regan, P.H., Bradley, D.A., Matthews, M., Al-Sulaiti, H.A., Santawamaitre, T. An evaluation of the natural radioactivity in Andaman beach sand samples of Thailand after the 2004 tsunami, Appl. Radiat. Isot., 70(8), 1467–1474, (2012).
  • Veiga, R., Sanches, N., Anjos, R.M., Macario, K., Bastos, J., Iguatemy, M., Aguiar, J.G., Santos, A.M.A., Mosquera, B., Carvalho, C., Filho, M.B., Umisedo, N.K., Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas., 41(2), 189–196, (2006).
  • UNSCEAR. Sources and Effects of Ionizing radiation, UnitedNations Scientific Committee on the Effects of Atomic radiation. Exposures from Natural Radiation Sources, Annex B, UnitedNations, New York (2000).
  • Stoulos, S., Manolopoulou, M., Papastefanou, C., Assessment of natural radiation exposure and radon exhalation from building materials in Greece, J. Environ. Radioact., 69, 225–240, (2003).
  • Abbady, A.G.E., Uosif, M.A.M., El-Taher, A., Natural radioactivityand dose assessment for phosphate rocks from Wadi El-Mashashand El-Mahamid Mines, Egypt, J. Environ. Radioact., 84,65 (2005).
  • El Afifi, E.M., Hilal, M.A., Khalifa, S.M., Aly, H.F., Evaluation of U, Th, K and Emanated radonin some NORM and TENORM, Radiat. Meas., 41, 627 (2006).
  • Al-Jarallah, M.I., Fazal-ur-Rehman, Musazay, M.S., Aksoy, A., Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia, Radiat.Meas., 40, 625 (2005).
  • Uyanik, N.A., Öncü, Z., Uyanik, O., Bozcu, M., Akkurt, İ., Günoğlu, K., Yağmurlu, F., Distribution of natural radioactivity from 40K radioelement in volcanics of Sandıklı-Şuhut (Afyon) area, Acta Physica Polonica A, 128(2-B), 438-440, (2012).
  • Canbaz, B., Füsun Çam, N., Yaprak, G., Candan, O., Natural radioactivity (226Ra,232Th and40K) and assessment of radiologicalhazards in the Kestanbolgranitoid, Turkey, Radiat. Prot. Dosim.,141, 192 (2010).
  • Fazal-ur-Rehman, M.I. Al-Jarallah, M.S. Musazay, F. Abu-Jarad,. Application of the can technique and radon gas analyzer for radonexhalation measurements, Appl. Radiat. Isot. 59, 353 (2003).
  • Myatt, T.A., Allen, J.G., Minegishi, T., McCarthy, W.B., Mac-Intosh, D.L., McCarthy, J.F., Assessing exposure to granite countertopsPart 1: radiation, J. Expo. Sci. Environ. Epidemiol, 20, 280 (2010).
  • Al-Selah, F.S., Al-Berzan, B., Measurements of natural radioac-tivity in some kinds of marble and granite used in Riyadh region, J. Nucl. Radiat. Phys., 2, 25–36, (2007).
  • El-Dine, N.W., El-Shershaby, A., Ahmed, F., Abdel-Haleem, A.S., Measurement of radioactivity and radon exhalation ratein different kinds of marbles and granites, Appl. Radiat. Isot., 55, 853, (2001).
  • Beretka, J., Mathew, P.J., Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Phys., 48, 87–95 (1985).
  • Akkurt I. ve Gunoglu, K., Natural radioactivity measurements and radiation dose estimation in some sedimentary rock samples in Turkey, Science and Technology of Nuclear Installations, Volume 2014 (2014).
  • Kohshi, C., Takao, I., Hideo, S., Terrestrial gamma radiation in Koshi prefecture, Japan, J. Health Sci., 47, 362 (2001).
  • Akkurt, I., Uyanik, N.A., Gunoglu, K., Radiation dose estimation: an in vitro measurement for Isparta-Turkey IJCESEN, 1(1),1-4, (2015).
  • Günay, O., Saç, M.M., Içhedef, M. Taşköprü, C. Soil gas radon concentrations along the Ganos Fault (GF), Arabian Journal of Geoscience, 11:213. Print ISSN: 1866-7538, (2018)
  • Akkurt I. Effective atomic and electron numbers of some steels at different energies. Annals of Nuclear Energy, 36, 1702–1705, (2009).
  • Akkurt I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A. Radiation shielding of concretes containing different aggregates, Cement & Concrete Composites, 28, 153–157, (2006).
  • Akkurt, I., Gunoglu, K. and Arda, S.S., Detection efficiency of NaI(Tl) detector in 511-1332 keV energy range, Science and Technology of Nuclear Installations, 1-5, (2014).
  • Iqbal, M., Tufail, M., ve Mirza, S.M., Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer. Journal of Environmental Radioactivity, 51, 255-265, (2000).
  • Senthilkumar, G., Raghu, Y., Sivakumar, S., Chandrasekaran, A., Anand, D. P., & Ravisankar, R., Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thir- uvannamalai, Tamilnadu, India, Journal of Radiation Research and Applied Sciences, 7, 1, 116-122, (2014).
  • Al-Zahrani, J.H. Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia, Journal of Radiation Research and Applied Sciences, 10, 241-245, (2017)
  • Osmanlioglu, A.E., Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey, Radiation Protection Dosimetry, 121, 325-329, (2006).
  • Sesana, L., Fumagalli, M., Carnevale, M., Polla, G., Facchini, U., Colombo, A., Tunesi, A., De Capitani, L., Rusconi, R., Natural radionuclides in the rocks of the Valle del Carvo Pluto in Piedmon, Radiation Protection Dosimetry, 118, 3, 337-344 (2006).
  • Amin, R.M., Gamma radiation measurements of naturally occurring radio- active samples from Egyptian commercial granites, Environmental Earth Sciences, 67(3), 771-775, (2012).
  • Malczewski, M., Teper, L., & Dorda, J., Assessment of natural andanthropo- genic radioactivity levels in rocks and soils in the environs of Swieradow Zdrojin Sudetes, Poland, by in situ gamma-ray spectrometry, Journal of Environmental Radioactivity, 73, 233-245, (2004).
  • Sharaf, J.M., & Hamideen, M.S., Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate, Applied Radiation and Isotopes, 80, 61-66, (2013).
  • Thabayneh, K. M., Measurement of natural radioactivity and radon exhala- tion rate in granite samples used in Palestinian buildings, Arabian Journal for Science and Engineering, 1-7, (2013).
  • Günay O., Determination of natural radioactivity and radiological effects in some soil samples in Beykoz-Istanbul, European Journal of Science and Technology 12, 9-14, (2018).
  • Abbasi, A., Calculation of gamma radiation dose rate and radon concentra- tion due to granites used as building materials in Iran, Radiation Protection Dosimetry, 155(3), 335-342, (2013).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Kadir Günoğlu 0000-0002-9008-9162

Yayımlanma Tarihi 29 Ekim 2018
Gönderilme Tarihi 16 Ağustos 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Günoğlu, K. (2018). Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 62-74. https://doi.org/10.25092/baunfbed.476604
AMA Günoğlu K. Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. Ekim 2018;20(3):62-74. doi:10.25092/baunfbed.476604
Chicago Günoğlu, Kadir. “Marmara Bölgesi’ndeki Bazı Mermer örneklerinde Radyolojik Tehlikelerin Ve yaşam Boyu Kanser Riskinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 3 (Ekim 2018): 62-74. https://doi.org/10.25092/baunfbed.476604.
EndNote Günoğlu K (01 Ekim 2018) Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 62–74.
IEEE K. Günoğlu, “Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 3, ss. 62–74, 2018, doi: 10.25092/baunfbed.476604.
ISNAD Günoğlu, Kadir. “Marmara Bölgesi’ndeki Bazı Mermer örneklerinde Radyolojik Tehlikelerin Ve yaşam Boyu Kanser Riskinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (Ekim 2018), 62-74. https://doi.org/10.25092/baunfbed.476604.
JAMA Günoğlu K. Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2018;20:62–74.
MLA Günoğlu, Kadir. “Marmara Bölgesi’ndeki Bazı Mermer örneklerinde Radyolojik Tehlikelerin Ve yaşam Boyu Kanser Riskinin değerlendirilmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 3, 2018, ss. 62-74, doi:10.25092/baunfbed.476604.
Vancouver Günoğlu K. Marmara Bölgesi’ndeki bazı mermer örneklerinde radyolojik tehlikelerin ve yaşam boyu kanser riskinin değerlendirilmesi. BAUN Fen. Bil. Enst. Dergisi. 2018;20(3):62-74.