Derleme
BibTex RIS Kaynak Göster

Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri

Yıl 2018, , 591 - 604, 01.12.2018
https://doi.org/10.25092/baunfbed.480558

Öz

Termoplastik matrisli kompozitler, mekanik özelliklerinin yanında üretim maliyetleri ve çevresel nedenlerle gün geçtikçe daha çok tercih edilmektedir.  Üretim sürecini kısaltarak tasarruf sağlamak üzere ısıtma prosesinin hızlandırılması amacıyla, indüksiyonla ısıtma yönteminin termoplastik matrisli kompozitler üzerindeki etkileri önemli bir araştırma konusu oluşturmaktadır.  Bu çalışmada indüksiyonla ısıtma yöntemi ile termoplastik matrisli kompozit malzemenin geometrisine bağlı olarak istenilen bölgesini, karbon elyaf takviye elemanının ısıl iletkenlik özelliğini kullanarak mevcut teknolojilere göre daha hızlı şekilde yüksek sıcaklıklarda şekillendirilmesine yönelik değişken ve parametreler incelenecektir.  Çalışmada öncelikle indüksiyonla ısıtma yöntemine ilişkin temel bilgiler verilmiş, daha sonra ısıtma prosesine etkiyen unsurlar ve esaslar ile son olarak yöntemdeki parametrelerin değiştirilmesi halinde malzeme üzerindeki etkileri ortaya konmuştur.  Çalışmanın, indüksiyonla ısıtma yöntemi ile termoplastik matrisli kompozitlerin üretiminde daha düşük maliyetli proseslerin oluşturulmasına yönelik araştırmalara kaynak olacağı değerlendirilmektedir.

Kaynakça

  • Bayerl, T., Duhovic, M., Mitschang, P., Bhattacharyya, D., The heating of polymer composites by electromagnetic induction – A review, Composites: Part A, 57, 27-40, (2014).
  • Menana, H., Féliachi, M., 3-D eddy current computation in carbon-fibre reinforced composites, IEEE Transactions on Magnetics, 45(3), 1008–1011, (2009).
  • Ramdane, B., Trichet, D., Belkadi, M., Saidi, T., Fouladgar, J., Electromagnetic and thermal modelling of composite materials using multilayer shell elements, IEEE Transactions on Magnetics, 72(5), 1134–1137, (2011).
  • Chen, S.C., Jong, W.R., Chang, J.A., Dynamic mould surface temperature control using induction heating and its effect on the surface appearance of weld line, Journal of Applied Polymer Science, 101, 1174–1180, (2006).
  • Kim, S., Shia, C.S., Kim, B.H., Yao, D., Injection moulding nanoscale features with the aid of induction heating, Polymer-Plastics Technology and Engineering, 46, 1031–1037, (2007).
  • Tanaka, K., Katsura, T., Kinoshita, Y., Katayama, T., Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction, High Performance Structures and Materials IV WIT Transactions on The Built Environment, 97, 211–219, (2008).
  • Border, J., Salas, R., Induction heated joining of thermoplastic composites without metal susceptors, Proceedings of the 34th international SAMPE symposium, 1989, 2569-2578, (1989).
  • Stokes, V.K., Experiments on the induction welding of thermoplastics, Polymer Engineering and Science, 43(9), 1523–1541, (2003).
  • Kagan, V.A., Nichols, R.J., Benefits of induction welding of reinforced thermoplastics in high performance applications, Journal of Reinforced Plastic Composites, 24(13), 1345–1352, (2005).
  • Knauf, B.J., Webb, D.P., Liu, C., Conway, P.P., Polymer bonding by induction heating for microfluidic applications, Proceedings of the 3rd IEEE international conference on electronics systems and integration technologies (ESTC), Berlin, 8, (2010).
  • Knauf, B.J., Webb, D.P., Liu, C.C., Conway, P.P., Low frequency induction heating for the sealing of plastic microfluidic systems, Microfluid Nanofluid, 9(2-3), 243–252, (2010).
  • Shevchenko, N., Fink, B.K., Yarlagadda, S., Tierney, J.T., Heider, D., Gillespie, Jr. J.W., Rapid automated induction lamination (RAIL) for high-volume production of carbon/thermoplastic laminates, Aberdeen Proving Ground: Army Research Laboratory, (2001).
  • Zach, T., Lew, J., North, T.H., Woodhams, R.T., Joining of high strength oriented polypropylene using electromagnetic induction bonding and ultrasonic welding, Materials Science and Technology, 5, 281–287, (1989).
  • Ahmed, T.J., Stavroc, D., Bersee, H.E.N., Beukers, A., Induction welding of thermoplastic composites – An overview, Composites: Part A, 37, 1638-1651, (2006).
  • Miller, A.K., Chang, C., Payne, A., Gur, M., Menzel, E., Peled, A., The nature of induction heating in graphite-fibre, polymer-matrix composite materials, SAMPE Journal, 26 (4), 37-54, (1990).
  • Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study of the induction heating of conductive fibre reinforced composites, Journal of Composite Materials, 36 (4), 401-421, (2002).
  • Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., Heating mechanisms in induction processing of carbon fibre reinforced thermoplastic prepreg, Proceedings of SAMPE sempozyumu, Long Beach ABD, (Mayıs 2000).
  • Fink, B.K., McCullough, R.L., Gillespie, Jr.J.W., Experimental verification of models for induction heating of continuous-carbon-fibre composites, Polymer Composites, 17 (2), 198-209, (1996).
  • Kim, H., Yarlagadda, S., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study on the induction heating of carbon fibre reinforced thermoplastic composites, Advanced Composite Materials, 11 (1), 71-80, (2002).
  • Puyal, D., Bernal, C., Burdio, J.M., Acero, J., Millan, I., Methods and procedures for accurate induction heating load measurement and characterization, IEEE International Symposium on Industrial Electronics, 805-810, (2007).
  • Rudolf, R., Mitschang, P., Neitzel, M., Induction heating of continuous carbon-fibre-reinforced thermoplastics, Composites: Part A, 31, 1191-1202, (2000).
  • Stokes, V.K., Experiments on the induction welding of thermoplastics, Proceedings of the Annual Technical Conference 2001, 1256-1261, (2001).
  • Rudnev, V., Loveless, D., Cook, R., Black, M., Handbook of induction heating, New York, ABD, Marcel Dekker, (2003).
  • Gillespie, Jr.J.W., McCulough, R.L., Fink, B.K., Induction heating of cross-ply carbon-fiber composites, Proceedings of the 50th Annual Technical Conference 92, 2106-2109, (1992).
  • Kim, H.J., Yarlagadda, S., Shevchenko, N.B., Fink, B.K., Gillespie, Jr.J.W., Development of a numerical model to predict in-plane heat generation patterns during induction processing of carbon fiber-reinforced prepreg stacks, Journal of Composite Materials, 37 (16), 1461-1483, (2003).
  • Rudolf, R., Mitschang, P., Neitzel, M., Welding of high-performance thermoplastic composites, Polymers and Polymer Composites, 7, 309-315, (1999).
  • Hümbert, M., Mitschang, P., Characterization and modification of the temperature distribution during continuous induction welding, 16th European Conference On Composite Materials, Seville, Spain, (Haziran 2014).
  • O’Shaughnessey, P.G., Dube, M., Villegas, I.F., Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes, Journal of Composites Materials, 50 (21), 2895-2910, (2016).
  • Deng, S., Djukic, L., Paton, R., Ye, L., Thermoplastic-epoxy interactions and their potential applications in joining composite structures – A review, Composites: Part A, 68, 121-132, (2015).
  • Yousefpour, A., Hojjati, M., Immarigeon, J.P., Fusion bonding/welding of thermoplastic composites, Journal of Thermoplastic Composite Materials, 17, 303-339, (2004).

Effects of induction heating in welding of carbon fiber reinforced thermoplastic composites

Yıl 2018, , 591 - 604, 01.12.2018
https://doi.org/10.25092/baunfbed.480558

Öz

Thermoplastic composites are increasingly preferred not only because of their mechanical features but also production costs and environmental reasons.  In order to accelerate heating process for the purpose of economic use of resources by shortening production process, it is essential to study on the effects of the induction heating method on thermoplastic composites.  In this study, basic information and components related to induction heating method are explained, then fundamentals and intrinsic structure affecting the heating process are examined and finally the effects of the changes in the parameters of the method on the material are indicated.  We assess that this study might be a resource to the researches to create new low-cost production processes of thermoplastic composites.

Kaynakça

  • Bayerl, T., Duhovic, M., Mitschang, P., Bhattacharyya, D., The heating of polymer composites by electromagnetic induction – A review, Composites: Part A, 57, 27-40, (2014).
  • Menana, H., Féliachi, M., 3-D eddy current computation in carbon-fibre reinforced composites, IEEE Transactions on Magnetics, 45(3), 1008–1011, (2009).
  • Ramdane, B., Trichet, D., Belkadi, M., Saidi, T., Fouladgar, J., Electromagnetic and thermal modelling of composite materials using multilayer shell elements, IEEE Transactions on Magnetics, 72(5), 1134–1137, (2011).
  • Chen, S.C., Jong, W.R., Chang, J.A., Dynamic mould surface temperature control using induction heating and its effect on the surface appearance of weld line, Journal of Applied Polymer Science, 101, 1174–1180, (2006).
  • Kim, S., Shia, C.S., Kim, B.H., Yao, D., Injection moulding nanoscale features with the aid of induction heating, Polymer-Plastics Technology and Engineering, 46, 1031–1037, (2007).
  • Tanaka, K., Katsura, T., Kinoshita, Y., Katayama, T., Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction, High Performance Structures and Materials IV WIT Transactions on The Built Environment, 97, 211–219, (2008).
  • Border, J., Salas, R., Induction heated joining of thermoplastic composites without metal susceptors, Proceedings of the 34th international SAMPE symposium, 1989, 2569-2578, (1989).
  • Stokes, V.K., Experiments on the induction welding of thermoplastics, Polymer Engineering and Science, 43(9), 1523–1541, (2003).
  • Kagan, V.A., Nichols, R.J., Benefits of induction welding of reinforced thermoplastics in high performance applications, Journal of Reinforced Plastic Composites, 24(13), 1345–1352, (2005).
  • Knauf, B.J., Webb, D.P., Liu, C., Conway, P.P., Polymer bonding by induction heating for microfluidic applications, Proceedings of the 3rd IEEE international conference on electronics systems and integration technologies (ESTC), Berlin, 8, (2010).
  • Knauf, B.J., Webb, D.P., Liu, C.C., Conway, P.P., Low frequency induction heating for the sealing of plastic microfluidic systems, Microfluid Nanofluid, 9(2-3), 243–252, (2010).
  • Shevchenko, N., Fink, B.K., Yarlagadda, S., Tierney, J.T., Heider, D., Gillespie, Jr. J.W., Rapid automated induction lamination (RAIL) for high-volume production of carbon/thermoplastic laminates, Aberdeen Proving Ground: Army Research Laboratory, (2001).
  • Zach, T., Lew, J., North, T.H., Woodhams, R.T., Joining of high strength oriented polypropylene using electromagnetic induction bonding and ultrasonic welding, Materials Science and Technology, 5, 281–287, (1989).
  • Ahmed, T.J., Stavroc, D., Bersee, H.E.N., Beukers, A., Induction welding of thermoplastic composites – An overview, Composites: Part A, 37, 1638-1651, (2006).
  • Miller, A.K., Chang, C., Payne, A., Gur, M., Menzel, E., Peled, A., The nature of induction heating in graphite-fibre, polymer-matrix composite materials, SAMPE Journal, 26 (4), 37-54, (1990).
  • Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study of the induction heating of conductive fibre reinforced composites, Journal of Composite Materials, 36 (4), 401-421, (2002).
  • Yarlagadda, S., Kim, H.J., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., Heating mechanisms in induction processing of carbon fibre reinforced thermoplastic prepreg, Proceedings of SAMPE sempozyumu, Long Beach ABD, (Mayıs 2000).
  • Fink, B.K., McCullough, R.L., Gillespie, Jr.J.W., Experimental verification of models for induction heating of continuous-carbon-fibre composites, Polymer Composites, 17 (2), 198-209, (1996).
  • Kim, H., Yarlagadda, S., Gillespie, Jr.J.W., Shevchenko, N.B., Fink, B.K., A study on the induction heating of carbon fibre reinforced thermoplastic composites, Advanced Composite Materials, 11 (1), 71-80, (2002).
  • Puyal, D., Bernal, C., Burdio, J.M., Acero, J., Millan, I., Methods and procedures for accurate induction heating load measurement and characterization, IEEE International Symposium on Industrial Electronics, 805-810, (2007).
  • Rudolf, R., Mitschang, P., Neitzel, M., Induction heating of continuous carbon-fibre-reinforced thermoplastics, Composites: Part A, 31, 1191-1202, (2000).
  • Stokes, V.K., Experiments on the induction welding of thermoplastics, Proceedings of the Annual Technical Conference 2001, 1256-1261, (2001).
  • Rudnev, V., Loveless, D., Cook, R., Black, M., Handbook of induction heating, New York, ABD, Marcel Dekker, (2003).
  • Gillespie, Jr.J.W., McCulough, R.L., Fink, B.K., Induction heating of cross-ply carbon-fiber composites, Proceedings of the 50th Annual Technical Conference 92, 2106-2109, (1992).
  • Kim, H.J., Yarlagadda, S., Shevchenko, N.B., Fink, B.K., Gillespie, Jr.J.W., Development of a numerical model to predict in-plane heat generation patterns during induction processing of carbon fiber-reinforced prepreg stacks, Journal of Composite Materials, 37 (16), 1461-1483, (2003).
  • Rudolf, R., Mitschang, P., Neitzel, M., Welding of high-performance thermoplastic composites, Polymers and Polymer Composites, 7, 309-315, (1999).
  • Hümbert, M., Mitschang, P., Characterization and modification of the temperature distribution during continuous induction welding, 16th European Conference On Composite Materials, Seville, Spain, (Haziran 2014).
  • O’Shaughnessey, P.G., Dube, M., Villegas, I.F., Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes, Journal of Composites Materials, 50 (21), 2895-2910, (2016).
  • Deng, S., Djukic, L., Paton, R., Ye, L., Thermoplastic-epoxy interactions and their potential applications in joining composite structures – A review, Composites: Part A, 68, 121-132, (2015).
  • Yousefpour, A., Hojjati, M., Immarigeon, J.P., Fusion bonding/welding of thermoplastic composites, Journal of Thermoplastic Composite Materials, 17, 303-339, (2004).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Öner Haşim Olgun Bu kişi benim 0000-0002-6940-3954

Uğur Çavdar 0000-0002-3434-6670

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 7 Kasım 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Olgun, Ö. H., & Çavdar, U. (2018). Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 591-604. https://doi.org/10.25092/baunfbed.480558
AMA Olgun ÖH, Çavdar U. Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri. BAUN Fen. Bil. Enst. Dergisi. Aralık 2018;20(2):591-604. doi:10.25092/baunfbed.480558
Chicago Olgun, Öner Haşim, ve Uğur Çavdar. “Termoplastik Matrisli Karbon Elyaf Takviyeli Kompozit Malzemelerin kaynaklanmasında indüksiyonla ısıtmanın Etkileri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 2 (Aralık 2018): 591-604. https://doi.org/10.25092/baunfbed.480558.
EndNote Olgun ÖH, Çavdar U (01 Aralık 2018) Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2 591–604.
IEEE Ö. H. Olgun ve U. Çavdar, “Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 2, ss. 591–604, 2018, doi: 10.25092/baunfbed.480558.
ISNAD Olgun, Öner Haşim - Çavdar, Uğur. “Termoplastik Matrisli Karbon Elyaf Takviyeli Kompozit Malzemelerin kaynaklanmasında indüksiyonla ısıtmanın Etkileri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (Aralık 2018), 591-604. https://doi.org/10.25092/baunfbed.480558.
JAMA Olgun ÖH, Çavdar U. Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri. BAUN Fen. Bil. Enst. Dergisi. 2018;20:591–604.
MLA Olgun, Öner Haşim ve Uğur Çavdar. “Termoplastik Matrisli Karbon Elyaf Takviyeli Kompozit Malzemelerin kaynaklanmasında indüksiyonla ısıtmanın Etkileri”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 2, 2018, ss. 591-04, doi:10.25092/baunfbed.480558.
Vancouver Olgun ÖH, Çavdar U. Termoplastik matrisli karbon elyaf takviyeli kompozit malzemelerin kaynaklanmasında indüksiyonla ısıtmanın etkileri. BAUN Fen. Bil. Enst. Dergisi. 2018;20(2):591-604.