Araştırma Makalesi
BibTex RIS Kaynak Göster

Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı

Yıl 2019, , 724 - 738, 28.06.2019
https://doi.org/10.25092/baunfbed.643900

Öz

Hareketli robotlarda eklem tahriki için dişli kutusuna sahip elektrik motorları yaygın olarak kullanılmaktadır. Dişli kutusu çıkışında yüksek empedans görülmektedir. Robotlarda eklem hızlarına, hareket türüne ve dışarıdan gelecek darbelere karşı eklem empedansının sürekli olarak değiştirilmesi gereklidir. Bu soruna çözüm oluşturulması için dişli kutusunun çıkışına seri olarak yay ve benzeri elastik elemanlar kullanılmış ve bunların yay katsayıları değişik yöntemlerle değiştirilmeye çalışılmıştır. Kısıtlı hareket alanlarında başarı da elde edilmiştir. Bu çalışmada daha pratik mekanik uygulamaya ve daha geniş yay katsayısı aralığına sahip eleman geliştirilmesi hedeflenmiştir. Bu amaçla hava yayı geliştirilmiş ve bu elemanın değişik yük ve basınç aralıklarında karakteristiği çıkarılmıştır. İlk deneysel bulgularda, farklı basınçlar altında seri elastik elemanın deformasyon ve yük eğrileri elde edilmiş, bu elamanların geniş kuvvet aralıklarında etkin kullanılabileceğini görülmüştür.

Kaynakça

  • Salisbury, K., Eberman, B., Levin, M., Townsend, W., The design and control of an experimental whole-arm manipulator, The Fifth International Symposium on Robotics Research, MIT Press, 233–241, (1991).
  • Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Ganesh, G., Garabini, M., Grioli, G., Haddadin, S., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Grebenstein, M., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, S., Wolf, S., Variable impedance actuators: moving the robots of tomorrow, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, (2012)
  • Van Ham, R., Thomas, S., Vanderborght, B., Hollander, K., Lefeber, D., Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications, IEEE Robotics and Automation Magazine, 16(3), 81–94, (2009).
  • Albu-Schaffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimbock, T., Hirzinger, G., The DLR lightweight robot: design and control concepts for robots in human environments, Industrial Robot: An International Journal, 34(5), 376–385, (2007).
  • Xu, Y., Au, S., Stabilization and path following of a single wheel robot, IEEE/ASME Transactions on Mechatronics, 9(2), 407–419, (2004).
  • K. Pullen, C. Ellis, Kinetic energy storage for vehicles, Hybrid Vehicle Conference, IET The Institution of Engineering and Technology, 2006, IET, 91–108, (2006).
  • Petit, F., Albu-Schaffer, A., State feedback damping control for a multi DOF variable stiffness robot arms, IEEE International Conference on Robotics and Automation, ICRA 2011, 5561–5567, (2011).
  • Albu-Schaeffer, A., Bicchi, A., Stramigioli, S., Burdet, E., Smagt, P., Parravicini, A., Lefeber, D., Tsagarakis, N., VIACTORS-variable impedance actuation systems embodying advanced interaction behaviors, European Future Technologies Conference, FET09, (2009).
  • Arumugom, S., Muthuraman, S. ve Ponselvan, V., Modeling and application of series elastic actuators for force control multi legged robots, Journal of Computing, 1(1), 26-33, (2009).
  • Rouse, E.J., Mooney, L.M. ve Martinez-Villalpando, E.C., Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy, 13th International Conference on Rehabilitation Robotics, ICORR, (2013).
  • Vanderborght, B., Verrelst, B., Ham, R.V., Damme, M.V., Lefeber, D., Duran, B.M.Y. ve Beyl, P., Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators, The International Journal of Robotics Research, 25(4), 343-358, (2006).
  • Pratt, J.E., Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots, Doktora Tezi, MIT (2000).
  • Kawamura, A. ve Zhu, C., The Development of biped robot MARI-3 for fast walking and running, IEEE, (2006).
  • Goris, K., Autonomous Mobile Robot Mechanical Design, (2005).
  • Yesilevskiy,Y. ve Remy, C.D., Series or parallel elasticity - Which is better?, Dynamic Walking, (2014).
  • Robinson, D.W., Pratt, J.E., Paluska, D.J. ve Pratt, G.A., Series elastic actuator development for a biomimetic walking robot, International Conference on Advanced Intelligent Mechatronics, Atlanta, (1999).
  • Junior, A.G.L., de Andrade, R.M. ve Filho, A.B., Linear serial elastic hydraulic actuator: digital prototyping and force control, IFAC (International Federation of Automatic Control), (2015).
  • Pratt, J.E. ve Krupp, B.T., Series elastic actuators for legged robots, Proc. SPIE 5422, Unmanned Ground Vehicle Technology VI, (2004).
  • Pratt, J.E., Krupp, B.T. ve Morse, C.J., The RoboKnee: An exoskeleton for enhancing strength and endurance durin walking, IEEE International Conference on Robotics and Automation, New Orleans, (2004).
  • Pratt, G.A., Low Impedance walking robots, Integrative and Comparative Biology, 42(1), 174-181, (2002).
  • Pratt, J., Krupp, B., Design of a bipedal walking robot, Proc. SPIE 6962, Unmanned Systems Technology X, Orlando, (2008).
  • Robinson, D.W., Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control, Doktora Tezi, MIT, Department of Mechanical Engineering, Massachusetts, (2000).
  • Pratt, J., Legged Robots at MIT: What’s new since raibert, IEEE Robotics & Automation Magazine, 7(3), 15-19, (2000).
  • Verrelst, B., Van Ham, R., Vanderborght, B., Lefeber, D., Daerden, F., VanDamme, M., Second generation pleated pneumatic artificial muscle and its robotic applications, Advanced Robotics, 20(7), 783–805, (2006).
  • Tonietti, G., Schiavi, R., Bicchi, A., Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction, IEEE International Conference on Robotics and Automation, ICRA 2005, 526–531, (2005).
  • Schiavi, R., Grioli, G., Sen, S., Bicchi, A., VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans, IEEE International Conference on Robotics and Automation, ICRA 2008, 2171–2176, (2008).
  • Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., Hirzinger, G., On joint design with intrinsic variable compliance: derivation of the DLR QA-joint, IEEE International Conference on Robotics and Automation, ICRA 2010, 1687–1694, (2010).
  • Hurst, J.W., Rizzi, A.A., Series compliance for robot actuation: application on the electric cable differential leg, IEEE Robotics & Automation Magazine 15(3), (2008).
  • Topaç, M.M. ve Kurulay, N.S., Computer aided design of an anti-roll bar for a passenger bus, Mühendis ve Makina, 50, 594. (2009).
  • Buzluk, S., Mekanik sistemlerde titreşim kontrolü, Yalıtım Kongresi, Eskişehir, (2001).
  • Seyfarth, A., Geyer, H., Blickhan, R., Lipfert, S., Rummel, J., Minekawa, Y., Iida, F., Fast motions in biomechanics and robotics, Vol. 340, Springer, Berlin, Heidelberg, 383–401 (Chapter Running and walking with compliant legs), (2006).
  • Tondu, B., Lopez, P., Modeling and control of mckibben artificial muscle robot actuators, IEEE Control Systems Magazine, 20(2), 15–38, (2000).
  • Verrelst, B., Van Ham, R., Vanderborght, B., Lefeber, D., Daerden, F., Van Damme, M., Second generation pleated pneumatic artificial muscle and its robotic applications, Advanced Robotics, 20(7), 783–805, (2006).
  • Villegas, D.C., Van Damme, M., Vanderborght, B., Lefeber, D., Third generation pleated pneumatic artificial muscles for robotic applications: development and comparison with McKibben muscles, Advanced Robotics, 26 1205–1227, (2012).
  • De, A., Tasch, U., A two-DOF manipulator with adjustable compliance capabilities and comparison with the human finger, Journal of Robotic System, 13, 25–34, (1996).
  • Akdas, D., An effective mechanical design and realization of a humanoid robot BUrobot, ACTA, Mechatronics, 11(10), (2014).

Design and production of continuously variable series elastic actuator

Yıl 2019, , 724 - 738, 28.06.2019
https://doi.org/10.25092/baunfbed.643900

Öz

Electric motors with gearboxes are widely used for joint drive in moving robots. High impedance is observed at the gearbox output. It is necessary to continuously change the joint impedance against the joint speeds, type of movement and the impacts from the outside. In order to solve this problem, spring and similar elastic elements were used in series to the output of the gearbox and their spring coefficients were tried to be changed by different methods. Success was achieved in the limited range of motion. In this study, it is aimed to develop elements with more practical mechanical application and wider spring coefficient range. For this purpose, air spring has been developed and the characteristics of this element at different load and pressure ranges have been worked out. In the first experimental findings, the deformation and load curves of the series elastic elements under different pressures were obtained and it was seen that these elements could be used effectively in wide force ranges.

Kaynakça

  • Salisbury, K., Eberman, B., Levin, M., Townsend, W., The design and control of an experimental whole-arm manipulator, The Fifth International Symposium on Robotics Research, MIT Press, 233–241, (1991).
  • Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Ganesh, G., Garabini, M., Grioli, G., Haddadin, S., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Grebenstein, M., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, S., Wolf, S., Variable impedance actuators: moving the robots of tomorrow, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, (2012)
  • Van Ham, R., Thomas, S., Vanderborght, B., Hollander, K., Lefeber, D., Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications, IEEE Robotics and Automation Magazine, 16(3), 81–94, (2009).
  • Albu-Schaffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimbock, T., Hirzinger, G., The DLR lightweight robot: design and control concepts for robots in human environments, Industrial Robot: An International Journal, 34(5), 376–385, (2007).
  • Xu, Y., Au, S., Stabilization and path following of a single wheel robot, IEEE/ASME Transactions on Mechatronics, 9(2), 407–419, (2004).
  • K. Pullen, C. Ellis, Kinetic energy storage for vehicles, Hybrid Vehicle Conference, IET The Institution of Engineering and Technology, 2006, IET, 91–108, (2006).
  • Petit, F., Albu-Schaffer, A., State feedback damping control for a multi DOF variable stiffness robot arms, IEEE International Conference on Robotics and Automation, ICRA 2011, 5561–5567, (2011).
  • Albu-Schaeffer, A., Bicchi, A., Stramigioli, S., Burdet, E., Smagt, P., Parravicini, A., Lefeber, D., Tsagarakis, N., VIACTORS-variable impedance actuation systems embodying advanced interaction behaviors, European Future Technologies Conference, FET09, (2009).
  • Arumugom, S., Muthuraman, S. ve Ponselvan, V., Modeling and application of series elastic actuators for force control multi legged robots, Journal of Computing, 1(1), 26-33, (2009).
  • Rouse, E.J., Mooney, L.M. ve Martinez-Villalpando, E.C., Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy, 13th International Conference on Rehabilitation Robotics, ICORR, (2013).
  • Vanderborght, B., Verrelst, B., Ham, R.V., Damme, M.V., Lefeber, D., Duran, B.M.Y. ve Beyl, P., Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators, The International Journal of Robotics Research, 25(4), 343-358, (2006).
  • Pratt, J.E., Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots, Doktora Tezi, MIT (2000).
  • Kawamura, A. ve Zhu, C., The Development of biped robot MARI-3 for fast walking and running, IEEE, (2006).
  • Goris, K., Autonomous Mobile Robot Mechanical Design, (2005).
  • Yesilevskiy,Y. ve Remy, C.D., Series or parallel elasticity - Which is better?, Dynamic Walking, (2014).
  • Robinson, D.W., Pratt, J.E., Paluska, D.J. ve Pratt, G.A., Series elastic actuator development for a biomimetic walking robot, International Conference on Advanced Intelligent Mechatronics, Atlanta, (1999).
  • Junior, A.G.L., de Andrade, R.M. ve Filho, A.B., Linear serial elastic hydraulic actuator: digital prototyping and force control, IFAC (International Federation of Automatic Control), (2015).
  • Pratt, J.E. ve Krupp, B.T., Series elastic actuators for legged robots, Proc. SPIE 5422, Unmanned Ground Vehicle Technology VI, (2004).
  • Pratt, J.E., Krupp, B.T. ve Morse, C.J., The RoboKnee: An exoskeleton for enhancing strength and endurance durin walking, IEEE International Conference on Robotics and Automation, New Orleans, (2004).
  • Pratt, G.A., Low Impedance walking robots, Integrative and Comparative Biology, 42(1), 174-181, (2002).
  • Pratt, J., Krupp, B., Design of a bipedal walking robot, Proc. SPIE 6962, Unmanned Systems Technology X, Orlando, (2008).
  • Robinson, D.W., Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control, Doktora Tezi, MIT, Department of Mechanical Engineering, Massachusetts, (2000).
  • Pratt, J., Legged Robots at MIT: What’s new since raibert, IEEE Robotics & Automation Magazine, 7(3), 15-19, (2000).
  • Verrelst, B., Van Ham, R., Vanderborght, B., Lefeber, D., Daerden, F., VanDamme, M., Second generation pleated pneumatic artificial muscle and its robotic applications, Advanced Robotics, 20(7), 783–805, (2006).
  • Tonietti, G., Schiavi, R., Bicchi, A., Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction, IEEE International Conference on Robotics and Automation, ICRA 2005, 526–531, (2005).
  • Schiavi, R., Grioli, G., Sen, S., Bicchi, A., VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans, IEEE International Conference on Robotics and Automation, ICRA 2008, 2171–2176, (2008).
  • Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., Hirzinger, G., On joint design with intrinsic variable compliance: derivation of the DLR QA-joint, IEEE International Conference on Robotics and Automation, ICRA 2010, 1687–1694, (2010).
  • Hurst, J.W., Rizzi, A.A., Series compliance for robot actuation: application on the electric cable differential leg, IEEE Robotics & Automation Magazine 15(3), (2008).
  • Topaç, M.M. ve Kurulay, N.S., Computer aided design of an anti-roll bar for a passenger bus, Mühendis ve Makina, 50, 594. (2009).
  • Buzluk, S., Mekanik sistemlerde titreşim kontrolü, Yalıtım Kongresi, Eskişehir, (2001).
  • Seyfarth, A., Geyer, H., Blickhan, R., Lipfert, S., Rummel, J., Minekawa, Y., Iida, F., Fast motions in biomechanics and robotics, Vol. 340, Springer, Berlin, Heidelberg, 383–401 (Chapter Running and walking with compliant legs), (2006).
  • Tondu, B., Lopez, P., Modeling and control of mckibben artificial muscle robot actuators, IEEE Control Systems Magazine, 20(2), 15–38, (2000).
  • Verrelst, B., Van Ham, R., Vanderborght, B., Lefeber, D., Daerden, F., Van Damme, M., Second generation pleated pneumatic artificial muscle and its robotic applications, Advanced Robotics, 20(7), 783–805, (2006).
  • Villegas, D.C., Van Damme, M., Vanderborght, B., Lefeber, D., Third generation pleated pneumatic artificial muscles for robotic applications: development and comparison with McKibben muscles, Advanced Robotics, 26 1205–1227, (2012).
  • De, A., Tasch, U., A two-DOF manipulator with adjustable compliance capabilities and comparison with the human finger, Journal of Robotic System, 13, 25–34, (1996).
  • Akdas, D., An effective mechanical design and realization of a humanoid robot BUrobot, ACTA, Mechatronics, 11(10), (2014).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ömer Pekdur Bu kişi benim 0000-0003-1392-0044

Davut Akdaş 0000-0002-2492-5046

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 1 Ekim 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Pekdur, Ö., & Akdaş, D. (2019). Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 724-738. https://doi.org/10.25092/baunfbed.643900
AMA Pekdur Ö, Akdaş D. Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı. BAUN Fen. Bil. Enst. Dergisi. Haziran 2019;21(2):724-738. doi:10.25092/baunfbed.643900
Chicago Pekdur, Ömer, ve Davut Akdaş. “Yay katsayısı sürekli değiştirilebilen Seri Elastik aktüatör tasarımı Ve Imalatı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 2 (Haziran 2019): 724-38. https://doi.org/10.25092/baunfbed.643900.
EndNote Pekdur Ö, Akdaş D (01 Haziran 2019) Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 724–738.
IEEE Ö. Pekdur ve D. Akdaş, “Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 2, ss. 724–738, 2019, doi: 10.25092/baunfbed.643900.
ISNAD Pekdur, Ömer - Akdaş, Davut. “Yay katsayısı sürekli değiştirilebilen Seri Elastik aktüatör tasarımı Ve Imalatı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (Haziran 2019), 724-738. https://doi.org/10.25092/baunfbed.643900.
JAMA Pekdur Ö, Akdaş D. Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı. BAUN Fen. Bil. Enst. Dergisi. 2019;21:724–738.
MLA Pekdur, Ömer ve Davut Akdaş. “Yay katsayısı sürekli değiştirilebilen Seri Elastik aktüatör tasarımı Ve Imalatı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 2, 2019, ss. 724-38, doi:10.25092/baunfbed.643900.
Vancouver Pekdur Ö, Akdaş D. Yay katsayısı sürekli değiştirilebilen seri elastik aktüatör tasarımı ve imalatı. BAUN Fen. Bil. Enst. Dergisi. 2019;21(2):724-38.