Araştırma Makalesi
BibTex RIS Kaynak Göster

Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği

Yıl 2019, , 756 - 765, 28.06.2019
https://doi.org/10.25092/baunfbed.643924

Öz

Algılayıcı ağların uygulama alanlarından biri olan karasal algılayıcı ağlar, gözlemleme işlemleri için günümüzde yaygın olarak kullanılmaktadır. Kablosuz algılayıcı ağlar, belirli bir bölgenin sıcaklık, nem, basınç, hareket gibi karakteristiklerini incelemek amacıyla küçük bir gömülü cihaz üzerine yerleştirilmiş farklı algılayıcıların birleşimi olarak karşımıza çıkmaktadır. Sürekli olarak belirli bir bölgeyi izlemek için kablosuz algılayıcı ağın bu bölgelerin kesişme noktalarında yer alması gerekmektedir. Bu makalede, kablosuz algılayıcı ağına dayalı bir gözlemleme sistemi oluşturulmuştur. Kırsal bölgelerdeki belirli bir arazinin ne tür meyve – sebze yetiştiriciliğine uygun olduğunu tespit etmek amacıyla sıcaklık, nem, basınç, vb. değerlerin sezilmesi düşünülmüştür. Gözlemleme için kullanılan algılayıcı düğümler benzetim ortamında geliştirilmiştir. Kablosuz algılayıcı ağ düğümlerinin yapısı, donanımı ve iş akışı tasarlanmıştır. Tasarlanan sistemin enerji verimli olarak çalışması ve paket çarpışmalarının yaşanmaması için ortam erişim tekniği olarak TDMA protokolü seçilmiştir. Benzetim sonuçları, algılayıcı ağın ortam bilgilerini hızlı bir şekilde toplama ve veriyi gerçek zamanlı olarak işleme merkezine aktarma yeteneğine sahip olduğunu göstermektedir. Ayrıca, önerdiğimiz sistem karasal alandaki kablosuz algılayıcı ağların kullanışlılığını ortaya koymaktadır.

Teşekkür

Değerli desteklerinden dolayı kıymetli eşim Sümeyye ve kızım Asel’e çok teşekkür ederim. Danışman olarak bana yaptığı katkılardan dolayı Doç. Dr. Ali Çalhan hocama çok teşekkür ederim.

Kaynakça

  • Ahmad, A., Javaid, N., Imran, M., Guizani, M. and Alhamed, A.A., An advanced energy consumption model for terrestrial wireless sensor networks, International Wireless Communications and Mobile Computing Conference (IWCMC), 790-793, Paphos, (2016).
  • Kato, A., Wakabayashi, H., Hayakawa, Y., Bradford, M., Watanabe, M. and Yamaguchi Y., Tropical forest disaster monitoring with multi-scale sensors from terrestrial laser, UAV, to satellite radar, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2883-2886, Fort Worth, TX, (2017).
  • Descamps, P., Vindevoghel, J., Bouazza, F. and Sawsan, S., Microwave doppler sensors for terrestrial transportation applications, IEEE Transactions on Vehicular Technology, 46, 1, 220-228, (1997).
  • Bachmann, R.J., Boria, F.J., Ifju, P.G., Quinn, R.D., Kline, J.E. and Vaidyanathan R., Utility of a sensor platform capable of aerial and terrestrial locomotion, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1581-1586, Monterey, CA, (2005).
  • Zhang, C., Terrestrial mobile networks for Air-to-ground communications of the general aviation, International Conference on Wireless Communications and Signal Processing (WCSP), 1-5, Nanjing, (2011).
  • Babbitt, J., O'Dell, S. and Xu, Y., Optimizing terrestrial transport architecture in satellite telephony networks, IEEE Wireless Communications and Networking Conference, 164-168, New Orleans, LA, USA, (1999).
  • Dean, R.A., Satellite/terrestrial interoperation in personal communications networks, Proceedings of 3rd IEEE International Conference on Universal Personal Communications, 450-454, San Diego, CA, USA, (1994).
  • Kapovits, A., Satellite communications integration with terrestrial networks, China Communications, 15, 8, 22-38, (2018).
  • Baras, J.S., Ball, M., Roussopoulos, N., Jang, K., Stathatos, K. and Valluri, J., Integrated management of large satellite-terrestrial networks, Proceedings MILCOM, 383-387, Monterey, CA, USA, (1997).
  • Chan, V.W.S., Some research directions for future integrated satellite and terrestrial networks, MILCOM - IEEE Military Communications Conference, 1-7, Orlando, FL, USA, (2007).
  • Hu, J. and Song, T., A vehicle-mounted communication system integrating satellite and terrestrial networks, 7th International Conference on Computing and Convergence Technology (ICCCT), 767-771, Seoul, (2012).
  • Sheriff, R.E. and Gardiner, J.G., Integrating satellite and terrestrial communication networks, IEE Colloquium on Mobile Communications, 1-7, London, UK, (1992).
  • Moraitis, N. and Panagopoulos, A.D., On the interference analysis between terrestrial cellular and multiple airborne wireless networks, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1371-1375, Rome, (2011).
  • Boria, F.J., A sensor platform capable of aerial and terrestrial locomotion, IEEE/RSJ International Conference on Intelligent Robots and Systems, 3959-3964, Edmonton, Alta, (2005).
  • Vuran, M.C. and Akyildiz, I.F., Cross-layer packet size optimization for wireless terrestrial, underwater, and underground sensor networks, IEEE INFOCOM - The 27th Conference on Computer Communications, 226-230, Phoenix, AZ, (2008).
  • Sato, N., Oikawa, M., Suzuki, J., Ishikawa, T. and Murata, Y., Design and implementation of movie camera recording on worker's motion tracing system by terrestrial magnetism sensors, 13th International Conference on Network-Based Information Systems, 451-456, Takayama, (2010).
  • Sato, N., Oikawa, M., Takayama, T. and Murata, Y., An angle measurement method by using terrestrial magnetism sensors on a ski jumper's motion monitoring system, 14th International Conference on Network-Based Information Systems, 60-67, Tirana, (2011).
  • Duan, S., Yu, Y. and Wang, Q., Monitoring and control of terrestrial pipe cathode protection system based on wireless sensor network, IET International Conference on Wireless Sensor Network (IET-WSN), 7-12, Beijing, (2010).
  • Stuntebeck, E.P., Pompili, D. and Melodia, T., Wireless underground sensor networks using commodity terrestrial motes, 2nd IEEE Workshop on Wireless Mesh Networks, 112-114, Reston, VA, (2006).
  • Alhashimi, A., Varagnolo, D. and Gustafsson, T., Calibrating Distance Sensors for Terrestrial Applications Without Groundtruth Information, IEEE Sensors Journal, 17, 2, 3698-3709, (2017).
  • Tondwalkar, A.V. and Vinayakray-Jani, P., Terrestrial localization by using angle of arrival measurements in wireless sensor network, International Conference on Computational Intelligence and Communication Networks (CICN), 188-191, Jabalpur, (2015).
  • https://www.riverbed.com/gb/, (06.02.2019).

Energy efficient TDMA access technique for surveillance in terrestrial sensor networks

Yıl 2019, , 756 - 765, 28.06.2019
https://doi.org/10.25092/baunfbed.643924

Öz

The terrestrial sensor networks, which are one of the application areas of sensor networks, are now widely used for monitoring and security operations. The wireless sensor networks are a combination of different sensors placed on a small embedded device to examine characteristics of a given region such as temperature, humidity, pressure, movement. The wireless sensor network must be located at the intersection points of these zones to continuously monitor a specific area. In this article, a monitoring system based on the wireless sensor network is created. The sensor nodes used for monitoring were developed in a simulation environment. The structure, hardware and workflow of wireless sensor network nodes are designed. TDMA protocol has been chosen as the medium access technique in order to ensure that the designed system operates in an energy-efficient manner and that packet collisions are not experienced. The simulation results show that the sensor network has the ability to quickly collect media information and transmit data to the processing center in real time. In addition, the system we proposed suggests the usefulness of wireless sensor networks in the terrestrial area.

Kaynakça

  • Ahmad, A., Javaid, N., Imran, M., Guizani, M. and Alhamed, A.A., An advanced energy consumption model for terrestrial wireless sensor networks, International Wireless Communications and Mobile Computing Conference (IWCMC), 790-793, Paphos, (2016).
  • Kato, A., Wakabayashi, H., Hayakawa, Y., Bradford, M., Watanabe, M. and Yamaguchi Y., Tropical forest disaster monitoring with multi-scale sensors from terrestrial laser, UAV, to satellite radar, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2883-2886, Fort Worth, TX, (2017).
  • Descamps, P., Vindevoghel, J., Bouazza, F. and Sawsan, S., Microwave doppler sensors for terrestrial transportation applications, IEEE Transactions on Vehicular Technology, 46, 1, 220-228, (1997).
  • Bachmann, R.J., Boria, F.J., Ifju, P.G., Quinn, R.D., Kline, J.E. and Vaidyanathan R., Utility of a sensor platform capable of aerial and terrestrial locomotion, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1581-1586, Monterey, CA, (2005).
  • Zhang, C., Terrestrial mobile networks for Air-to-ground communications of the general aviation, International Conference on Wireless Communications and Signal Processing (WCSP), 1-5, Nanjing, (2011).
  • Babbitt, J., O'Dell, S. and Xu, Y., Optimizing terrestrial transport architecture in satellite telephony networks, IEEE Wireless Communications and Networking Conference, 164-168, New Orleans, LA, USA, (1999).
  • Dean, R.A., Satellite/terrestrial interoperation in personal communications networks, Proceedings of 3rd IEEE International Conference on Universal Personal Communications, 450-454, San Diego, CA, USA, (1994).
  • Kapovits, A., Satellite communications integration with terrestrial networks, China Communications, 15, 8, 22-38, (2018).
  • Baras, J.S., Ball, M., Roussopoulos, N., Jang, K., Stathatos, K. and Valluri, J., Integrated management of large satellite-terrestrial networks, Proceedings MILCOM, 383-387, Monterey, CA, USA, (1997).
  • Chan, V.W.S., Some research directions for future integrated satellite and terrestrial networks, MILCOM - IEEE Military Communications Conference, 1-7, Orlando, FL, USA, (2007).
  • Hu, J. and Song, T., A vehicle-mounted communication system integrating satellite and terrestrial networks, 7th International Conference on Computing and Convergence Technology (ICCCT), 767-771, Seoul, (2012).
  • Sheriff, R.E. and Gardiner, J.G., Integrating satellite and terrestrial communication networks, IEE Colloquium on Mobile Communications, 1-7, London, UK, (1992).
  • Moraitis, N. and Panagopoulos, A.D., On the interference analysis between terrestrial cellular and multiple airborne wireless networks, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1371-1375, Rome, (2011).
  • Boria, F.J., A sensor platform capable of aerial and terrestrial locomotion, IEEE/RSJ International Conference on Intelligent Robots and Systems, 3959-3964, Edmonton, Alta, (2005).
  • Vuran, M.C. and Akyildiz, I.F., Cross-layer packet size optimization for wireless terrestrial, underwater, and underground sensor networks, IEEE INFOCOM - The 27th Conference on Computer Communications, 226-230, Phoenix, AZ, (2008).
  • Sato, N., Oikawa, M., Suzuki, J., Ishikawa, T. and Murata, Y., Design and implementation of movie camera recording on worker's motion tracing system by terrestrial magnetism sensors, 13th International Conference on Network-Based Information Systems, 451-456, Takayama, (2010).
  • Sato, N., Oikawa, M., Takayama, T. and Murata, Y., An angle measurement method by using terrestrial magnetism sensors on a ski jumper's motion monitoring system, 14th International Conference on Network-Based Information Systems, 60-67, Tirana, (2011).
  • Duan, S., Yu, Y. and Wang, Q., Monitoring and control of terrestrial pipe cathode protection system based on wireless sensor network, IET International Conference on Wireless Sensor Network (IET-WSN), 7-12, Beijing, (2010).
  • Stuntebeck, E.P., Pompili, D. and Melodia, T., Wireless underground sensor networks using commodity terrestrial motes, 2nd IEEE Workshop on Wireless Mesh Networks, 112-114, Reston, VA, (2006).
  • Alhashimi, A., Varagnolo, D. and Gustafsson, T., Calibrating Distance Sensors for Terrestrial Applications Without Groundtruth Information, IEEE Sensors Journal, 17, 2, 3698-3709, (2017).
  • Tondwalkar, A.V. and Vinayakray-Jani, P., Terrestrial localization by using angle of arrival measurements in wireless sensor network, International Conference on Computational Intelligence and Communication Networks (CICN), 188-191, Jabalpur, (2015).
  • https://www.riverbed.com/gb/, (06.02.2019).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Enes Bayrakdar 0000-0001-9446-0988

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 13 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Bayrakdar, M. E. (2019). Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 756-765. https://doi.org/10.25092/baunfbed.643924
AMA Bayrakdar ME. Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği. BAUN Fen. Bil. Enst. Dergisi. Haziran 2019;21(2):756-765. doi:10.25092/baunfbed.643924
Chicago Bayrakdar, Muhammed Enes. “Karasal algılayıcı ağlarda gözlemleme için Enerji Etkin TDMA erişim tekniği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 2 (Haziran 2019): 756-65. https://doi.org/10.25092/baunfbed.643924.
EndNote Bayrakdar ME (01 Haziran 2019) Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 756–765.
IEEE M. E. Bayrakdar, “Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 2, ss. 756–765, 2019, doi: 10.25092/baunfbed.643924.
ISNAD Bayrakdar, Muhammed Enes. “Karasal algılayıcı ağlarda gözlemleme için Enerji Etkin TDMA erişim tekniği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (Haziran 2019), 756-765. https://doi.org/10.25092/baunfbed.643924.
JAMA Bayrakdar ME. Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği. BAUN Fen. Bil. Enst. Dergisi. 2019;21:756–765.
MLA Bayrakdar, Muhammed Enes. “Karasal algılayıcı ağlarda gözlemleme için Enerji Etkin TDMA erişim tekniği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 2, 2019, ss. 756-65, doi:10.25092/baunfbed.643924.
Vancouver Bayrakdar ME. Karasal algılayıcı ağlarda gözlemleme için enerji etkin TDMA erişim tekniği. BAUN Fen. Bil. Enst. Dergisi. 2019;21(2):756-65.