Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi

Yıl 2020, , 415 - 427, 10.04.2020
https://doi.org/10.25092/baunfbed.707348

Öz

Bu çalışmada önemli bir yağ asidi olan pentanoik asidin hidroksiapatit kristalizasyonu üzerine olan etkisi incelenmiştir. Bu amaçla kristalizasyon deneyleri saf ortamda ve 100, 500 ve 1000 ppm olmak üzere üç farklı pentanoik asit konsantrasyonunda kesikli bir sistemde yürütülmüştür. Elde edilen hidroksiapatit kristalleri, XRD, SEM, tane boyutu, BET, FTIR, zeta potansiyeli ve TG analiz yöntemleri kullanılarak karakterize edilmiştir. Pentanoik asit varlığında, hidroksiapatit kristallerin ortalama tane boyutunun saf ortama göre arttığı, kristal morfolojisinde önemli değişiklikler meydana geldiği belirlenmiştir. FTIR analiz sonuçları, katkı maddesi olarak kullanılan pentanoik asidin kristal yüzeyine tutunduğunu göstermiş ve bu sonuçlar zeta potansiyeli ölçümleri ile desteklenmiştir. Saf ortamda üretilen hidroksiapatit kristallerinin zeta potansiyeli -20,9±1,1 mV iken kristallerin yüzey yükleri 1000 ppm pentanoik asit konsantrasyonunda +2,1±1,3 mV değerine ulaşmıştır. Ayrıca hidroksiapatit kristallerinin termal bozunma kinetiği Kissinger ve Coats-Redfern yöntemleri kullanılarak incelenmiştir. Saf ortamda elde edilen hidroksiapatit kristallerinin termal bozunması sırasında gerekli olan ortalama aktivasyon enerjisi Kissinger modeli kullanılarak 538,51 kJ/mol olarak belirlenmiştir. Bu değer pentanoik asit ortamında üretilen kristaller için ise 580,99 kJ/mol olarak hesaplanmıştır. Coats Redfern kinetik modeline göre hem saf hem de katkı ortamı için 3D difüzyon modelinin hidroksiapatitin termal bozunma sürecini en iyi karakterize eden mekanizma olduğu belirlenmiştir.

Destekleyen Kurum

Marmara Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FEN-C-YLP-120417-0176

Teşekkür

Bu çalışma Marmara Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FEN-C-YLP-120417-0176 nolu proje kapsamında desteklenmiştir.

Kaynakça

  • Koutsopoulos, S. ve Dalas, E., The effect of acidic amino acids on hydroxyapatite crystallization, Journal of Crystal Growth, 217, 4, 410-415, (2010).
  • Kanchana, P. ve Sekar, C., Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method, Journal of Crystal Growth, 312, 6, 808-816, (2010).
  • Parekh, B., Joshi, M. ve Vaidya, A., Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature, Journal of Crystal Growth, 310, 7-9, 1749-1753, (2008).
  • Chen, R. ve Shen, J., The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants, Materials Letters, 259, 126881, (2020).
  • Wada, Y., Kudoh, K., Matsumoto, M. ve Onoe, K., Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications, Microchemical Journal, 153, 104485, (2020).
  • Wada, Y., Kudoh, K., Matsumoto, M. ve Onoe, K., Development of hydroxyapatite crystallization utilizing the contact reaction of a minute droplet with atmospheric plasmas, Journal of Crystal Growth, 466, 1-5, (2017).
  • Dalmônico, G.M.L., López, E.O., Longuinho, M.M., Checca, N.R., Farina, M., Ersen, O., Rossi, A.M. ve Rossi, A.L., Materials Chemistry and Physics, 237, 121862, (2019).
  • Zhang, Y., Lu, J., Wang, J., Yang, S. ve Chen, Y., Synthesis of nanorod and needle-like hydroxyapatite crystal and role of pH adjustment, Journal of Crystal Growth, 311, 23-24, 4740-4746, (2009).
  • Aneem, T.H., Saha, S.K., Jahan, R.A., Wong, S.Y., Li, X. ve Arafat, M.T., Effects of organic modifiers and temperature on the synthesis of biomimetic carbonated hydroxyapatite, Ceramics International, (2019).
  • Liuyun, J., Chengdong, X., Lixin, J. ve Lijuan X., Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite, Composites Science and Technology, 93, 61-67, (2014).
  • Nasiri-Tabrizi, B., Pingguan-Murphy, B., Basirun, W.J. ve Baradaran, S., Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders, Journal of Industrial and Engineering Chemistry, 33, 316-325, (2016).
  • Edwin, N. ve Wilson, P., Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation, Ultrasonics Sonochemistry, 50, 188-199, (2019).
  • Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebuglec, A. ve Manna, S., Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, Journals of Materials Chemistry, 14, 2277–2281, (2004).
  • Kissinger, H.E., Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 11, 1702-1706, (1957).
  • Chen, L., Mccrate, J.M., Lee, J.C.M. ve Li, H., The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells, Nanotechnology, 22, 10, 693–698, (2011).
  • Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, Journal of Biomedical Materials Research, 62, 4, 600-612, (2002).
  • Latocha, J., Wojasiński, M., Sobieszuk, P., Gierlotka, S. ve Ciach, T., Impact of morphology-influencing factors in lecithin-based hydroxyapatite precipitation, Ceramics International, 45, 17, 21220-21227, (2019).
  • Wang, T., Dorner-Reisel, A. ve Müller, E., Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder, Journal of the European Ceramic Society, 24, 4, 693–698, (2004).
  • Khawam, A., ve Flanagan, D.R., Role of isoconversional methods in varying activation energies of solid-state kinetics I. isothermal kinetic studies, Thermochimica Acta, 429, 93-102, (2005).
  • Ebrahimi-Kahrizsangi, R. ve Abbasi, M.H., Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA, Transactions of Nonferrous Metals Society of China, 18, 217-221, (2008).

Hydroxyapatite crystallization in the presence of pentanoic acid

Yıl 2020, , 415 - 427, 10.04.2020
https://doi.org/10.25092/baunfbed.707348

Öz

The effect of pentanoic acid, an important fatty acid, on hydroxyapatite crystallization was investigated in this study. The crystallization experiments were performed in pure media and in the presence of three different pentanoic acid concentrations as 100, 500 and 1000 ppm in a batch system. The hydroxyapatite crystals obtained were characterized by XRD, SEM, particle size, BET, FTIR, zeta potential and TG analysis techniques. Compared to pure media, the particle size of the hydroxyapatite obtained in pentanoic acid media increased, significant changes in crystal morphology were determined. The results of FTIR showed that pentanoic acid used as the additive adsorbed onto the surface of the hydroxyapatite crystals and this result was supported by zeta potential measurements. While the zeta potential of hydroxyapatite crystals obtained in pure media was -20.9 ± 1.1 mV, this value was + 2.1 ± 1.3 mV for 1000 ppm pentanoic acid media. In addition, the thermal decomposition kinetics of hydroxyapatite crystal was investigated using Kissinger and Coats-Redfern models. The average activation energy value for the decomposition of crystals was 538.51 kJ / mol. This value was calculated as 580.99 kJ / mol for crystals obtained in pentanoic acid media. According to the Coats Redfern kinetic model, the 3D diffusion model was determined to be the best model to characterize the thermal decomposition behavior of the hydroxyapatite crystals.

Proje Numarası

FEN-C-YLP-120417-0176

Kaynakça

  • Koutsopoulos, S. ve Dalas, E., The effect of acidic amino acids on hydroxyapatite crystallization, Journal of Crystal Growth, 217, 4, 410-415, (2010).
  • Kanchana, P. ve Sekar, C., Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method, Journal of Crystal Growth, 312, 6, 808-816, (2010).
  • Parekh, B., Joshi, M. ve Vaidya, A., Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature, Journal of Crystal Growth, 310, 7-9, 1749-1753, (2008).
  • Chen, R. ve Shen, J., The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants, Materials Letters, 259, 126881, (2020).
  • Wada, Y., Kudoh, K., Matsumoto, M. ve Onoe, K., Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications, Microchemical Journal, 153, 104485, (2020).
  • Wada, Y., Kudoh, K., Matsumoto, M. ve Onoe, K., Development of hydroxyapatite crystallization utilizing the contact reaction of a minute droplet with atmospheric plasmas, Journal of Crystal Growth, 466, 1-5, (2017).
  • Dalmônico, G.M.L., López, E.O., Longuinho, M.M., Checca, N.R., Farina, M., Ersen, O., Rossi, A.M. ve Rossi, A.L., Materials Chemistry and Physics, 237, 121862, (2019).
  • Zhang, Y., Lu, J., Wang, J., Yang, S. ve Chen, Y., Synthesis of nanorod and needle-like hydroxyapatite crystal and role of pH adjustment, Journal of Crystal Growth, 311, 23-24, 4740-4746, (2009).
  • Aneem, T.H., Saha, S.K., Jahan, R.A., Wong, S.Y., Li, X. ve Arafat, M.T., Effects of organic modifiers and temperature on the synthesis of biomimetic carbonated hydroxyapatite, Ceramics International, (2019).
  • Liuyun, J., Chengdong, X., Lixin, J. ve Lijuan X., Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite, Composites Science and Technology, 93, 61-67, (2014).
  • Nasiri-Tabrizi, B., Pingguan-Murphy, B., Basirun, W.J. ve Baradaran, S., Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders, Journal of Industrial and Engineering Chemistry, 33, 316-325, (2016).
  • Edwin, N. ve Wilson, P., Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation, Ultrasonics Sonochemistry, 50, 188-199, (2019).
  • Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebuglec, A. ve Manna, S., Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, Journals of Materials Chemistry, 14, 2277–2281, (2004).
  • Kissinger, H.E., Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29, 11, 1702-1706, (1957).
  • Chen, L., Mccrate, J.M., Lee, J.C.M. ve Li, H., The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells, Nanotechnology, 22, 10, 693–698, (2011).
  • Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, Journal of Biomedical Materials Research, 62, 4, 600-612, (2002).
  • Latocha, J., Wojasiński, M., Sobieszuk, P., Gierlotka, S. ve Ciach, T., Impact of morphology-influencing factors in lecithin-based hydroxyapatite precipitation, Ceramics International, 45, 17, 21220-21227, (2019).
  • Wang, T., Dorner-Reisel, A. ve Müller, E., Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder, Journal of the European Ceramic Society, 24, 4, 693–698, (2004).
  • Khawam, A., ve Flanagan, D.R., Role of isoconversional methods in varying activation energies of solid-state kinetics I. isothermal kinetic studies, Thermochimica Acta, 429, 93-102, (2005).
  • Ebrahimi-Kahrizsangi, R. ve Abbasi, M.H., Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA, Transactions of Nonferrous Metals Society of China, 18, 217-221, (2008).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Perviz Sayan Bu kişi benim 0000-0003-4407-6464

Sevgi Polat 0000-0002-0934-2125

Ayça Kara Bu kişi benim 0000-0003-0157-0171

Proje Numarası FEN-C-YLP-120417-0176
Yayımlanma Tarihi 10 Nisan 2020
Gönderilme Tarihi 13 Ekim 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sayan, P., Polat, S., & Kara, A. (2020). Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 415-427. https://doi.org/10.25092/baunfbed.707348
AMA Sayan P, Polat S, Kara A. Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi. BAUN Fen. Bil. Enst. Dergisi. Nisan 2020;22(2):415-427. doi:10.25092/baunfbed.707348
Chicago Sayan, Perviz, Sevgi Polat, ve Ayça Kara. “Hidroksiapatit Kristalizasyonunun Pentanoik Asit varlığında Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 2 (Nisan 2020): 415-27. https://doi.org/10.25092/baunfbed.707348.
EndNote Sayan P, Polat S, Kara A (01 Nisan 2020) Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 415–427.
IEEE P. Sayan, S. Polat, ve A. Kara, “Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 22, sy. 2, ss. 415–427, 2020, doi: 10.25092/baunfbed.707348.
ISNAD Sayan, Perviz vd. “Hidroksiapatit Kristalizasyonunun Pentanoik Asit varlığında Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (Nisan 2020), 415-427. https://doi.org/10.25092/baunfbed.707348.
JAMA Sayan P, Polat S, Kara A. Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2020;22:415–427.
MLA Sayan, Perviz vd. “Hidroksiapatit Kristalizasyonunun Pentanoik Asit varlığında Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 2, 2020, ss. 415-27, doi:10.25092/baunfbed.707348.
Vancouver Sayan P, Polat S, Kara A. Hidroksiapatit kristalizasyonunun pentanoik asit varlığında incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2020;22(2):415-27.