Araştırma Makalesi
BibTex RIS Kaynak Göster

Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN

Yıl 2021, , 819 - 830, 04.07.2021
https://doi.org/10.25092/baunfbed.867386

Öz

This study deals with confirmation of the experimentally measured cooling/solidification time of the Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN analysis programs. Therefore, a new code was written and run by using FORTRAN programming. With the ANSYS Thermal Transient module, cooling time and the injection conditions of PET into a cylindrical mold were simulated. Then, the experimental results and the analysis data were compared. It was determined that the results are in good agreement (100%) in case of heat capacity (Cp) value is chosen depending on the temperature. The results show that the proposed new codes will contribute to the optimization of cooling/solidification time for industrial scale PET production.

Kaynakça

  • Stelson, K.A. Calculating cooling times for polymer injection moulding, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217, 5, 709–713, (2003)
  • Yu, C.J. and Sunderland, J.E. Determination of ejection temperature and cooling time in injection molding, Polymer Engineering & Science, 32, 3, 191–197, (1992)
  • Liang, J.Z. and Ness, J.N. The calculation of cooling time in injection moulding, Journal of Materials Processing Technology, 57, 62–64, (1996)
  • Dietzel, H. Schumann, J. Müller, K. Kühl-und Siegelzeit analytisch berechnen, Kunststoffe, 81, 1138–1140, (1991)
  • Menges, G. Michaeli, W. Mohren, P. How to make injection molds, Carl Hanser Verlag GmbH Co KG, 271-283, (2013)
  • Bird, R.B. Stewart,W.E. Lightfoot, E.N. Transport Phenomena, John Wiley & Sons, New York, 413, 354-357, (1960)
  • Jaeger, J.C. and Carslaw, H.S. Conduction of heat in solids, Clarendon Press, Oxford, 100, (1959)
  • Ballman, R.L. and Shusman, T. Easy way to calculate injection molding set-up time, Modern Plastics, 194, 130-131, (1959)
  • Wang, G. Zhao, G. Wang, X. Heating cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding, Materials & Design, 59, 310–322, (2014)
  • Hassan, H. Regnier, N. Lebot, C. Pujos, C. Defaye, G. Effect of cooling system on the polymer temperature and solidification during injection molding, Applied Thermal Engineering, 29, 1786–1791, (2009)
  • Li, C.L. Li, C.G. Mok, A.C.K. Automatic layout design of plastic injection mould cooling system, Computer-Aided Design, 37, 645–662, (2005)
  • Li, C.L. A feature-based approach to injection mould cooling system design, Computer-Aided Design, 33, 1073–1090, (2001)
  • Bendada, A. Derdouri, A. Lamontagne, M. Simard, Y. Analysis of thermal contact resistance between polymer and mold in injection molding, Applied Thermal Engineering, 24, 2029–2040, (2004)
  • Li, C.G. and Li, C.L. Plastic injection mould cooling system design by the configuration space method, Computer-Aided Design, 40, 334–349, (2008)

Polietilen Teraftalat (PET) eriyiğinin deneysel olarak ölçülen soğutma süresinin ANSYS ve FORTRAN tarafından doğrulanması

Yıl 2021, , 819 - 830, 04.07.2021
https://doi.org/10.25092/baunfbed.867386

Öz

Bu çalışma, Polietilen Tereftalat (PET) eriyiğinin deneysel olarak ölçülen soğutma süresinin soğutma/katılaşma süresinin ANSYS ve FORTRAN analiz programları tarafından doğrulanması ile ilgilidir. Bunun için, FORTRAN programı kullanılarak, yeni bir kod yazıldı ve çalıştırıldı. ANSYS Thermal Transient modülü ile soğutma süresi ve PET'in silindirik kalıba enjeksiyon koşulları simüle edildi. Sonrasında, deneysel sonuçlar ve analiz verileri karşılaştırıldı. Isı kapasite (Cp) değerinin sıcaklığa bağlı olarak seçilmesi durumunda sonuçların uyum içinde olduğu (%100) tespit edildi. Sonuçlar, önerilen yeni kodların endüstriyel ölçekte PET üretimi için soğutma/katılaşma süresinin optimizasyonuna katkıda bulunacağını göstermektedir.

Kaynakça

  • Stelson, K.A. Calculating cooling times for polymer injection moulding, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217, 5, 709–713, (2003)
  • Yu, C.J. and Sunderland, J.E. Determination of ejection temperature and cooling time in injection molding, Polymer Engineering & Science, 32, 3, 191–197, (1992)
  • Liang, J.Z. and Ness, J.N. The calculation of cooling time in injection moulding, Journal of Materials Processing Technology, 57, 62–64, (1996)
  • Dietzel, H. Schumann, J. Müller, K. Kühl-und Siegelzeit analytisch berechnen, Kunststoffe, 81, 1138–1140, (1991)
  • Menges, G. Michaeli, W. Mohren, P. How to make injection molds, Carl Hanser Verlag GmbH Co KG, 271-283, (2013)
  • Bird, R.B. Stewart,W.E. Lightfoot, E.N. Transport Phenomena, John Wiley & Sons, New York, 413, 354-357, (1960)
  • Jaeger, J.C. and Carslaw, H.S. Conduction of heat in solids, Clarendon Press, Oxford, 100, (1959)
  • Ballman, R.L. and Shusman, T. Easy way to calculate injection molding set-up time, Modern Plastics, 194, 130-131, (1959)
  • Wang, G. Zhao, G. Wang, X. Heating cooling channels design for an automotive interior part and its evaluation in rapid heat cycle molding, Materials & Design, 59, 310–322, (2014)
  • Hassan, H. Regnier, N. Lebot, C. Pujos, C. Defaye, G. Effect of cooling system on the polymer temperature and solidification during injection molding, Applied Thermal Engineering, 29, 1786–1791, (2009)
  • Li, C.L. Li, C.G. Mok, A.C.K. Automatic layout design of plastic injection mould cooling system, Computer-Aided Design, 37, 645–662, (2005)
  • Li, C.L. A feature-based approach to injection mould cooling system design, Computer-Aided Design, 33, 1073–1090, (2001)
  • Bendada, A. Derdouri, A. Lamontagne, M. Simard, Y. Analysis of thermal contact resistance between polymer and mold in injection molding, Applied Thermal Engineering, 24, 2029–2040, (2004)
  • Li, C.G. and Li, C.L. Plastic injection mould cooling system design by the configuration space method, Computer-Aided Design, 40, 334–349, (2008)
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Bilal Demirel 0000-0002-5390-0630

Mustafa Danacı 0000-0002-2430-6106

Fatih Akkurt 0000-0002-3509-2246

Ali Yaraş 0000-0003-1725-7788

Yayımlanma Tarihi 4 Temmuz 2021
Gönderilme Tarihi 25 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Demirel, B., Danacı, M., Akkurt, F., Yaraş, A. (2021). Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 819-830. https://doi.org/10.25092/baunfbed.867386
AMA Demirel B, Danacı M, Akkurt F, Yaraş A. Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2021;23(2):819-830. doi:10.25092/baunfbed.867386
Chicago Demirel, Bilal, Mustafa Danacı, Fatih Akkurt, ve Ali Yaraş. “Confirmation of the Experimentally Measured Cooling Time of Polyethylene Terephthalate (PET) Melt by ANSYS and FORTRAN”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 2 (Temmuz 2021): 819-30. https://doi.org/10.25092/baunfbed.867386.
EndNote Demirel B, Danacı M, Akkurt F, Yaraş A (01 Temmuz 2021) Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 819–830.
IEEE B. Demirel, M. Danacı, F. Akkurt, ve A. Yaraş, “Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN”, BAUN Fen. Bil. Enst. Dergisi, c. 23, sy. 2, ss. 819–830, 2021, doi: 10.25092/baunfbed.867386.
ISNAD Demirel, Bilal vd. “Confirmation of the Experimentally Measured Cooling Time of Polyethylene Terephthalate (PET) Melt by ANSYS and FORTRAN”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (Temmuz 2021), 819-830. https://doi.org/10.25092/baunfbed.867386.
JAMA Demirel B, Danacı M, Akkurt F, Yaraş A. Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN. BAUN Fen. Bil. Enst. Dergisi. 2021;23:819–830.
MLA Demirel, Bilal vd. “Confirmation of the Experimentally Measured Cooling Time of Polyethylene Terephthalate (PET) Melt by ANSYS and FORTRAN”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 2, 2021, ss. 819-30, doi:10.25092/baunfbed.867386.
Vancouver Demirel B, Danacı M, Akkurt F, Yaraş A. Confirmation of the experimentally measured cooling time of Polyethylene Terephthalate (PET) melt by ANSYS and FORTRAN. BAUN Fen. Bil. Enst. Dergisi. 2021;23(2):819-30.